Skip to main content
Log in

Trails of Green Alga Hydrogen Research – from Hans Gaffron to New Frontiers

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

This paper summarizes aspects of the history of photosynthetic hydrogen research, from the pioneering discovery of Hans Gaffron over 60 years ago to the potential exploitation of green algae in commercial H2-production. The trail started as a mere scientific curiosity, but promises to be a most important discovery, one that leads photosynthesis research to important commercial applications. Progress achieved in the field of photosynthetic hydrogen production by green algae includes elucidation of the mechanism, the ability to modify photosynthesis by physiological means and to produce bulk amounts of H2 gas, and cloning of the [Fe]-hydrogenase genes in several green algal species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams MWW (1990) The structure and mechanism of ironhydrogenases. Biochim Biophys Acta 1020: 115–145

    Article  PubMed  CAS  Google Scholar 

  • Adams MWW and Stiefel EI (2000) Organometallic iron: the key to biological hydrogen metabolism. Curr Opin Chem Biol 4: 214–220

    Article  PubMed  CAS  Google Scholar 

  • Arnon DI, Mitsui A and Paneque A (1961) Photoproduction of hydrogen gas coupled with photosynthetic phosphorylation. Science 134: 1425–1425

    Google Scholar 

  • Bamberger ES, King D, Erbes DL and Gibbs M (1982) H2 and CO2evolution by anaerobically adapted Chlamydomonas reinhardtii F60. Plant Physiol 69: 1268–1273

    PubMed  CAS  Google Scholar 

  • Ben-Amotz A and Avron M(1990) The biotechnology of cultivating the halotolerant alga Dunaliella. Trends Biotechnol 8: 121–128

    Article  CAS  Google Scholar 

  • Ben-Amotz A, Erbes DL, Riederer-Henderson MA, Peavey DG and Gibbs M (1975) H2 metabolism in photosythetic organism. I. Dark H2 evolution and uptake by algae and mosses. Plant Physiol 56: 72–77

    PubMed  CAS  Google Scholar 

  • Benemann JR (1996) Hydrogen biotechnology: progress and prospects. Nat Biotechnol 14: 1101–1103

    Article  PubMed  CAS  Google Scholar 

  • Bennoun P (2001) Chlororespiration and the process of carotenoid biosynthesis. Biochim Biophys Acta 1506: 133–142

    Article  PubMed  CAS  Google Scholar 

  • Bennoun P (2002) The present model for chlororespiration. Photosynth Res 73: 273–277

    Article  PubMed  CAS  Google Scholar 

  • Bishop NI (1966) Partial reactions of photosynthesis and photoreduction. Ann Rev Plant Physiol 17: 185–208

    Article  CAS  Google Scholar 

  • Bishop NI and Gaffron H (1963) On the interrelation of the mechanisms for oxygen and hydrogen evolution in adapted algae. In: Kok B and Jagendorf AT (eds) Photosynthetic Mechanisms in Green Plants, Publ 1145, pp 441–451. Natl Acad Sci Natl Res Council, Washington, DC

    Google Scholar 

  • Bishop NI, Frick M and Jones LW (1977) Photohydrogen production in green algae: water serves as the primary substrate for hydrogen and oxygen production. In: Mitsui A, Miyachi S, San Pietro A and Tamura S (eds) Biological Solar Energy Conversion, pp 3–22. Academic Press, New York

    Google Scholar 

  • Cinco RM, Macinnis JM and Greenbaum E (1993) The role of carbon dioxide in light-activated hydrogen production by Chlamydomonas reinhardtii. Photosynth Res 38: 27–33

    Article  CAS  Google Scholar 

  • Erbes DL, King D and Gibbs M (1979) Inactivation of hydrogenase in cell-free extracts and whole cells of Chlamydomonas reinhardtii by oxygen. Plant Physiol 63: 1138–1142

    PubMed  CAS  Google Scholar 

  • Feild TS, Nedbal L and Ort DR (1998) Nonphotochemical reduction of the plastoquinone pool in sunflower leaves originates from chlororespiration. Plant Physiol 116: 1209–1218

    Article  PubMed  CAS  Google Scholar 

  • Florin L, Tsokoglou A and Happe T (2001) A novel type of [Fe]-hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetical electron transport chain. J Biol Chem 276: 6125–6132

    Article  PubMed  CAS  Google Scholar 

  • Francis K and Senger H (1985) Correlation betweeen respiration and hydrogenase adaptation in Scenedesmus obliquus. Physiol Plant 65: 167–170

    Article  CAS  Google Scholar 

  • Frenkel AW (1952) Hydrogen evolution of the flagellate green alga Chlamydomonas moewusi. Arch Biochem Biophys 38: 219–230

    Article  PubMed  CAS  Google Scholar 

  • Frenkel AW and Lewin RA (1954) Photoreduction by Chlamydomonas. Am J Bot 41: 586–589

    Article  CAS  Google Scholar 

  • Gaffron H (1939) Reduction of CO2 with H2 in green plants. Nature 143: 204–205

    CAS  Google Scholar 

  • Gaffron H (1940) Carbon dioxide reduction with molecular hydrogen in green algae. Am J Bot 27: 273–283

    Article  CAS  Google Scholar 

  • Gaffron H (1942) Reduction of carbon dioxide coupled with the oxyhydrogen reaction in algae. J Gen Physiol 26: 241–267

    Article  CAS  PubMed  Google Scholar 

  • Gaffron H (1944) Photosynthesis, photoreduction and dark reduction of carbon dioxide in certain algae. Biol Rev Cambridge Phil Soc 19: 1–20

    Article  CAS  Google Scholar 

  • Gaffron H and Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26: 219–240

    Article  CAS  PubMed  Google Scholar 

  • Gfeller RP and Gibbs M (1984) Fermentative metabolism of Chlamydomonas reinhardtii. I. Analysis of fermentative products from starch in dark-light. Plant Physiol 75: 212–218

    PubMed  CAS  Google Scholar 

  • Gfeller RP and Gibbs M (1985) Fermentative metabolism of Chlamydomonas reinhardtii. II. Role of plastoquinone. Plant Physiol 77: 509–511

    PubMed  CAS  Google Scholar 

  • Ghirardi ML, Togasaki RK and Seibert M(1997) Oxygen sensitivity of algal H2-production. Appl Biochem Biotech 63: 141–151

    Google Scholar 

  • Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M, Greenbaum E and Melis A (2000) Microalgae: a green source of renewable H2.Trends Biotechnol 18: 506–511

    Article  PubMed  CAS  Google Scholar 

  • Gibbs M, Gfeller RP and Chen C (1986) Fermentative metabolism of Chlamydomonas reinhardtii. III. Photo-assimilation of acetate. Plant Physiol 82: 160–166

    PubMed  CAS  Google Scholar 

  • Godde D and Trebst A (1980) NADH as electron donor for the photosynthetic membrane of Chlamydomonas reinhardtii. Arch Microbiol 127: 245–252

    Article  CAS  Google Scholar 

  • Greenbaum E (1982) Photosynthetic hydrogen and oxygen production: kinetic studies. Science 196: 879–880

    Google Scholar 

  • Greenbaum E (1988) Energetic efficiency of H2 photoevolution by algal water-splitting. Biophys J 54: 365–368

    Google Scholar 

  • Greenbaum E, Guillard RRL and Sunda WG (1983) Hydrogen and oxygen photoproduction by marine algae. Photochem Photobiol 37: 649–655

    CAS  Google Scholar 

  • Happe T and Kaminski A (2002) Differential regulation of the [Fe]-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii. Eur J Biochem 269: 1022–1032

    Article  PubMed  CAS  Google Scholar 

  • Happe T and Naber JD (1993) Isolation, characterization and Nterminal amino acid sequence of hydrogenase from the green alga Chlamydomonas reinhardtii. Eur J Biochem 214: 475–481

    Article  PubMed  CAS  Google Scholar 

  • Happe T, Mosler B and Naber JD (1994) Induction, localization and metal content of hydrogenase in the green alga Chlamydomonas reinhardtii. Eur J Biochem 222: 769–774

    Article  PubMed  CAS  Google Scholar 

  • Happe T, Hemschemeier A, Winkler M and Kaminski A (2002) Hydrogenases in green algae: do they safe the algae's life and solve our energy problems? Trends Plant Sci 7: 246–250

    Article  PubMed  CAS  Google Scholar 

  • Healey FP (1970) The mechanism of hydrogen evolution by Chlamydomonas moewusii. Plant Physiol 45: 153–159

    PubMed  CAS  Google Scholar 

  • Homann PH (2003) Hydrogen metabolism of green algae. Discovery and early research — a tribute to Hans Gaffron and his coworkers. Photosynth Res 76: 93–103

    Article  PubMed  CAS  Google Scholar 

  • Horner DS, Heil B, Happe T and Embley TM (2002) Iron hydrogenases, ancient enzymes in modern eukaryotes. Trends Biochem Sci 27: 148–153

    Article  PubMed  CAS  Google Scholar 

  • Kaltwasser H, Stuart TS and Gaffron H (1969) Light-dependent hydrogen evolution by Scenedesmus. Planta 89: 309–322

    Article  CAS  Google Scholar 

  • Kessler E (1966) The effect of glucose on hydrogenase activity in Chlorella. Biochim Biophys Acta 112: 173–175

    PubMed  CAS  Google Scholar 

  • Kessler E (1973) Effect of anaerobiosis on photosynthetic reactions and nitrogen metabolism of algae with and without hydrogenase. Arch Microbiol 93: 91–100

    CAS  Google Scholar 

  • Kessler E (1974) Hydrogenase, photoreduction and anaerobic growth of algae. In: Stewart WDP (ed) Algal Physiology and Biochemistry, pp 454–473. Blackwell, Oxford

    Google Scholar 

  • Klein U and Betz A (1978) Fermentative metabolism of hydrogenevolving Chlamydomonas moewusii. Plant Physiol 61: 953–956

    PubMed  CAS  Google Scholar 

  • Lien S and San Pietro S (1981) Effect of uncouplers on anaerobic adaptation of hydrogenase activity in C. reinhardtii. Biochem Biophys Res Comm 103: 139–147

    Article  PubMed  CAS  Google Scholar 

  • Maione TE and Gibbs M (1986a) Association of the chloroplastic respiratory and photosynthetic electron transport chains of C. reinhardii with photoreduction and the oxyhydrogen reaction. Plant Physiol 80: 364–368

    PubMed  CAS  Google Scholar 

  • Maione TE and Gibbs M (1986b) Hydrogenase-mediated activities in isolated chloroplasts of Chlamydomonas reinhardii. Plant Physiol 80: 360–363

    PubMed  CAS  Google Scholar 

  • McBride AC, Lien S, Togasaki RK and San Pietro A (1977) Mutational analysis of Chlamydomonas reinhardi: application to biological solar energy conversion. In: Mitsui A, Miyachi S, San Pietro A and Tamura S (eds) Biological Solar Energy Conversion, pp 77–86. Academic Press, New York

    Google Scholar 

  • Melis A and Happe T (2001) Hydrogen production: green algae as a source of energy. Plant Physiol 127: 740–748

    Article  PubMed  CAS  Google Scholar 

  • Melis A, Zhang L, Forestier M, Ghirardi ML and Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122: 127–136

    Article  PubMed  CAS  Google Scholar 

  • Miura Y (1995) Hydrogen production by biophotolysis based on microalgal photosynthesis. Process Biochem 30: 1–7

    Article  CAS  Google Scholar 

  • Miura Y, Ohta S, Mano M and Miyamoto K (1986) Isolation and characterization of a unicellular green alga exhibiting high activity in dark hydrogen production. Agric Biol Chem 50: 2837–2844

    CAS  Google Scholar 

  • Miura Y, Saitoh C, Matsuoka S and Miyamoto K (1992) Stably sustained hydrogen production with high molar yield through a combination of a marine green alga and a photosynthetic bacterium. Biosci Biotechnol Biochem 56: 751–754

    Article  CAS  Google Scholar 

  • Miyaki J, Matsunaga T and San Pietro A (2001) BioHydorgen II. An Approach to Environmentally Acceptable Technology, pp 1–273. Pergamon Press, New York

    Google Scholar 

  • Miyamoto K, Nawa Y, Matsuoka S, Ohta S and Miura Y (1990) Mechanism of adaptation and hydrogen photoproduction in a marine green alga Chlamydomonas sp. MGA 161. J Ferment Bioeng 70: 66–69

    Article  CAS  Google Scholar 

  • Nicolet Y, Lemon BJ, Fontecilla-Camps JC and Peters JW(2000) A novel FeS cluster in Fe-only hydrogenases. Trends Biochem Sci 25: 138–142

    Article  PubMed  CAS  Google Scholar 

  • Nicolet Y, de Lacey AL, Vernede X, Fernandez VM, Hatchikian EC and Fontecilla-Camps JC (2001) Crystallographic and FTIR spectroscopic evidence of changes in Fe coordination upon reduction of the active site of the Fe-only hydrogenase from Desulfovibrio desulfuricans. J Am Chem Soc 123: 1596–1601

    Article  PubMed  CAS  Google Scholar 

  • Ohta S, Miyamoto K and Miura Y (1987) Hydrogen evolution as a consumption mode of reducing equivalents in green alga fermentation. Plant Physiol 83: 1022–1026

    Article  PubMed  CAS  Google Scholar 

  • Peters JW (1999) Structure and mechanism of iron-only hydrogenases. Curr Opin Struct Biol 9: 670–676

    Article  PubMed  CAS  Google Scholar 

  • Peters JW, Lanzilotta WN, Lemon BJ and Seefeldt LC (1998) Xray crystal structure of the [Fe]-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Angstrom resolution. Science 282: 1853–1858

    Article  PubMed  CAS  Google Scholar 

  • Randt C and Senger H (1985) Participation of the two photosystems in light dependent hydrogen evolution in Scenedesmus obliquus. Photochem Photobiol 42: 553–557

    CAS  Google Scholar 

  • Roessler PG and Lien S (1984a) Activation and de novo synthesis of hydrogenase in Chlamydomonas. Plant Physiol 76: 1086–1089

    PubMed  CAS  Google Scholar 

  • Roessler PG and Lien S (1984b) Purification of hydrogenase from Chlamydomonas reinhardtii. Plant Physiol 75: 705–709

    PubMed  CAS  Google Scholar 

  • Schulz R (1996) Hydrogenases and hydrogen production in eukaryotic organisms and cyanobacteria. J Mar Biotechnol 4: 16–22

    CAS  Google Scholar 

  • Smith BM, Morrissey PJ, Guenther JE, Nemson JA, Harrison MA, Allen JF and Melis A (1990) Response of the photosynthetic apparatus in Dunaliella salina (green algae) to irradiance stress. Plant Physiol 93: 1433–1440

    PubMed  CAS  Google Scholar 

  • Spruit CP (1958) Simultaneous photoproduction of hydrogen and oxygen by Chlorella. Meded Landbouwhogesch Wageningen 58: 1–17

    CAS  Google Scholar 

  • Stuart TS and Gaffron H (1971) The kinetics of hydrogen photoproduction by adapted Scenedesmus. Planta (Berlin) 100: 228–243

    CAS  Google Scholar 

  • Stuart TS and Gaffron H (1972a) The mechanism of hydrogen photoproduction by several algae. I. The effect of inhibitors of photophosphorylation. Planta (Berlin) 106: 91–100

    CAS  Google Scholar 

  • Stuart TS and Gaffron H (1972b) The mechanism of hydrogen photoproduction by several algae. II. The contribution of Photosystem II. Planta (Berlin) 106: 101–112

    CAS  Google Scholar 

  • Van Neil EWJ, Janssen M, Lindblad P, Barten H, Reith JH and Wijffels RH (2002) BioHydrogen 2002 (Special Issue). Int J Hydrogen Energy 27: 1123–1505

    Article  Google Scholar 

  • Vignais PN, Billoud B and Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25: 455–501

    PubMed  CAS  Google Scholar 

  • Winkler M, Heil B and Happe T (2002) Isolation and molecular characterization of the [Fe]-hydrogenase from the unicellular green alga Chlorella fusca. Biochim Biophys Acta 1576: 330–334

    PubMed  CAS  Google Scholar 

  • Wunschiers R, Stangier K, Senger H and Schulz R (2001) Molecular evidence for a [Fe]-hydrogenase in the green alga Scenedesmus obliquus. Curr Microbiol 42: 353–360

    Article  PubMed  CAS  Google Scholar 

  • Wykoff DD, Davies JP, Melis A and Grossman AR (1998) The regulation of photosynthetic electron-transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol 117: 129–139

    Article  PubMed  CAS  Google Scholar 

  • Zaborski OR (1998) Biohydrogen, pp 1–552. Plenum Press, New York

    Google Scholar 

  • Zhang L, Happe T and Melis A (2002) Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Planta 214: 552–561

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melis, A., Happe, T. Trails of Green Alga Hydrogen Research – from Hans Gaffron to New Frontiers. Photosynthesis Research 80, 401–409 (2004). https://doi.org/10.1023/B:PRES.0000030421.31730.cb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PRES.0000030421.31730.cb

Navigation