Skip to main content
Log in

Arabidopsis Transcriptional Activators CBF1, CBF2, and CBF3 have Matching Functional Activities

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

When Arabidopsis is exposed to low temperature a small gene family encoding transcription factors known as CBF1, CBF2, and CBF3 (also referred to as DREB1b, DREB1c, and DREB1a, respectively) is rapidly induced followed by expression of CBF-targeted genes, the CBF regulon, which act to bring about an increase in freezing tolerance. The CBF1, 2 and 3 proteins, though highly similar in amino acid sequence, are not identical, raising the question of whether the proteins have the same functions. Here we explored this issue by comparing the effects that overexpression of each CBF gene had on Arabidopsis growth and development, proline and sugar composition, freezing tolerance and gene expression. Taken together, the results support the conclusion that the CBF1, 2 and 3 transcriptional activators have redundant functional activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, G., Ebert, P.R., Mitra, A. and Ha, S.B. 1988. Binary vectors. In: S.B. Gelvin and R.A. Schilperoort (Eds.), Plant Molecular Biology Manual. Kluwer Academic Publishers, Dordrecht, pp. 1-19.

    Google Scholar 

  • Artus, N.N., Uemura, M., Steponkus, P.L., Gilmour, S.J., Lin, C. and Thomashow, M.F. 1996. Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proc Natl Acad Sci USA 93: 13404-13409.

    PubMed  Google Scholar 

  • Baker, S.S., Wilhelm, K.S. and Thomashow, M.F. 1994. The 5'-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought-and ABA-regulated gene expression. Plant Mol Biol 24: 701-713.

    PubMed  Google Scholar 

  • Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B.H., Hong, X., Agarwal, M. and Zhu, J.K. 2003. ICE1: a regulator of coldinduced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17: 1043-1054.

    PubMed  Google Scholar 

  • Clough, S.J. and Bent, A.F. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735-743.

    PubMed  Google Scholar 

  • Delseny, M., Cooke, R. and Penon, P. 1983. Sequence heterogeneity in radish nuclear ribosomal RNA genes. Plant Sci Lett 30: 107-119.

    Article  Google Scholar 

  • Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem 28: 350-356.

    Google Scholar 

  • Estrada, N.R. 1982. Breeding wild and primitive potato species to obtain frost-resistant cultivated varieties. In: P.H. Li and A. Sakai (Eds.), Plant Cold Hardiness and Freezing Stress. Mechanisms and Crop Implications. Academic Press, New York, pp. 615-633.

    Google Scholar 

  • Feinberg, A.P. and Vogelstein, B. 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132: 6-13.

    PubMed  Google Scholar 

  • Fowler, S. and Thomashow, M.F. 2002. Arabidopsis transcriptome profing indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14: 1675-1690.

    PubMed  Google Scholar 

  • Gilmour, S.J., Lin, C. and Thomashow, M.F. 1996. Purifition and properties of Arabidopsis thaliana COR (cold-regulated) gene polypeptides COR15am and COR6.6 expressed in Escherichia coli. Plant Physiol 111: 293-299.

    PubMed  Google Scholar 

  • Gilmour, S.J., Zarka, D.G., Stockinger, E.J., Salazar, M.P., Houghton, J.M. and Thomashow, M.F. 1998. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16: 433-442.

    PubMed  Google Scholar 

  • Gilmour, S.J., Sebolt, A.M., Salazar, M.P., Everard, J.D. and Thomashow, M.F. 2000. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124: 1854-1865.

    PubMed  Google Scholar 

  • Guy, C.L. 1990. Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol 41: 187-223.

    Google Scholar 

  • Guy, C.L., Huber, J.L.A. and Huber, S.C. 1992. Sucrose phosphate synthase and sucrose accumulation at low temperature. Plant Physiol 100: 502-508.

    Google Scholar 

  • Hajela, R.K., Horvath, D.P., Gilmour, S.J. and Thomashow, M.F. 1990. Molecular cloning and expression of cor (coldregulated) genes in Arabidopsis thaliana. Plant Physiol 93: 1246-1252.

    Google Scholar 

  • Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O. and Thomashow, M.F. 1998. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280: 104-106.

    Google Scholar 

  • Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17: 287-291.

    PubMed  Google Scholar 

  • Koster, K.L. and Lynch, D.V. 1992. Solute accumulation and compartmentation during the cold-acclimation of Puma rye. Plant Physiol 98: 108-113.

    Google Scholar 

  • Lin, C. and Thomashow, M.F. 1992. DNA sequence analysis of a complementary DNA for cold-regulated Arabidopsis gene cor15 and characterization of the COR15 polypeptide. Plant Physiol 99: 519-525.

    Google Scholar 

  • Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/ AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperatureresponsive gene expression, respectively, in Arabidopsis. Plant Cell 10: 1391-1406.

    PubMed  Google Scholar 

  • McKown, R., Kuroki, G. and Warren, G. 1996. Cold responses of Arabidopsis mutants impaired in freezing tolerance. J Exp Bot 47: 1919-1925.

    Google Scholar 

  • Medina, J., Bargues, M., Terol, J., Perez-Alonso, M. and Salinas, J. 1999. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol 119: 463-470.

    PubMed  Google Scholar 

  • Metz, A.M., Timmer, R.T. and Browning, K.S. 1992. Sequences for two cDNAs encoding Arabidopsis thaliana eukaryotic protein synthesis initiation factor 4A. Gene 120: 313-314.

    PubMed  Google Scholar 

  • Nanjo, T., Kobayashi, M., Yoshiba, Y., Kakubari, Y., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1999. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett 461: 205-210.

    PubMed  Google Scholar 

  • Palta, J.P. and Li, P.H. 1979. Frost-hardiness in relation to leaf anatomy and natural distribution of several Solanum species. Crop Sci 19: 665-671.

    Google Scholar 

  • Riechmann, J.L. and Meyerowitz, E.M. 1998. The AP2/ EREBP family of plant transcription factors. Biol Chem 379: 633-646.

    PubMed  Google Scholar 

  • Schägger, H. and von Jagow, G. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166: 368-379.

    PubMed  Google Scholar 

  • Shinwari, Z.K., Nakashima, K., Miura, S., Kasuga, M., Seki, M., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1998. An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem Biophys Res Commun 250: 161-170.

    PubMed  Google Scholar 

  • Steponkus, P.L., Uemura, M., Joseph, R.A., Gilmour, S.J. and Thomashow, M.F. 1998. Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc Natl Acad Sci USA 95: 14570-14575.

    PubMed  Google Scholar 

  • Stockinger, E.J., Gilmour, S.J. and Thomashow, M.F. 1997. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94: 1035-1040.

    PubMed  Google Scholar 

  • Taji, T., Ohsumi, C., Iuchi, S., Seki, M., Kasuga, M., Kobayashi, M., Yamaguchi-Shinozaki, K. and Shinozaki, K. 2002. Important roles of drought-and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29: 417-426.

    PubMed  Google Scholar 

  • Thomashow, M.F. 1998. Role of cold-responsive genes in plant freezing tolerance. Plant Physiol 118: 1-8.

    PubMed  Google Scholar 

  • Thomashow, M.F. 2001. So what's new in the field of plant cold acclimation? lots! Plant Physiol 125: 89-93.

    PubMed  Google Scholar 

  • Towbin, H., Staehelin, T. and Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76: 4350-4354.

    PubMed  Google Scholar 

  • Troll, W. and Lindsley, J. 1955. A photometric method for the determination of proline. J Biol Chem. 215: 655-660.

    PubMed  Google Scholar 

  • Uemura, M., Joseph, R.A. and Steponkus, P.L. 1995. Cold acclimation of Arabidopsis thaliana (effect on plasma membrane lipid composition and freeze-induced lesions). Plant Physiol 109: 15-30.

    PubMed  Google Scholar 

  • Wanner, L.A. and Junttila, O. 1999. Cold-induced freezing tolerance in Arabidopsis. Plant Physiol 120: 391-400.

    PubMed  Google Scholar 

  • Yamaguchi-Shinozaki, K. and Shinozaki, K. 1994. A novel cisacting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6: 251-264.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilmour, S.J., Fowler, S.G. & Thomashow, M.F. Arabidopsis Transcriptional Activators CBF1, CBF2, and CBF3 have Matching Functional Activities. Plant Mol Biol 54, 767–781 (2004). https://doi.org/10.1023/B:PLAN.0000040902.06881.d4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PLAN.0000040902.06881.d4

Navigation