Skip to main content
Log in

Effects of Extracts of Commonly Consumed Food Supplements and Food Fractions on the Permeability of Drugs Across Caco-2 Cell Monolayers

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Extracts made from berries, herbs, and various plant materials, which might possess a range of activities, are used as health promoting products. Because little is known about their effects on the absorption of co-administered drugs, the effects of some food supplements, Finnish berries, and herbs were studied on the permeability of some commonly used drugs.

Methods. The permeabilities of verapamil, metoprolol, ketoprofen, paracetamol, and furosemide were studied across Caco-2 cell monolayers with contemporaneously administered extracts from flax seed, purple loosestrife, and Scots pine bark; bilberries, cowberries, and raspberries; oregano, rosemary, and sage. Toxicological tests were conducted to determine cellular damage.

Results. The effects of extracts on drug permeabilities were generally minor. Flax seed decreased the permeability of all drugs except verapamil. Purple loosestrife and pine decreased verapamil and metoprolol permeability. Changes caused by berries were mainly pH-related. Rosemary and oregano enhanced furosemide permeability.

Conclusions. Ingestion of extracts of herbs and berries studied are not expected to markedly change the permeabilities of highly permeable drugs. Harmful effects at sites of or during absorption are unlikely. However, if high doses of extracts are administered with low permeable drugs in vitro,effects on drug permeabilities could not be excluded. Use of such extracts should therefore be evaluated during continuous medication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Wilkinson. The effects of diet, aging and disease states on presystemic elimination and oral drug bioavailability in humans. Adv. Drug Deliv. Rev. 27:129159 (1997).

    Google Scholar 

  2. K. E. Anderson, A. H. Cooney, and A. Kappas. Nutrition and oxidative drug metabolism in man: relative influence of dietary lipids, carbohydrate and protein. Clin. Pharmacol. Ther. 26:493 501 (1979).

    Google Scholar 

  3. T. C. Fagan, T. Walle, M. J. Oexmann, U. K. Walle, S. A. Bai, and T. E. Gaffney. Increased clearance of propranolol and theophyl-line by high-protein compared with high-carbohydrate diet. Clin. Pharmacol. Ther. 41:402406 (1987).

    Google Scholar 

  4. E. J. Pantuck, C. B. Pantuck, A. Kappas, A. H. Conney, and K. E. Anderson. Effects of protein and carbohydrate content of diet on drug conjugation. Clin. Pharmacol. Ther. 50:254258 (1991).

    Google Scholar 

  5. P. G. Welling. Effect of food on drug absorption. Annu. Rev. Nutr. 16:383415 (1996).

    Google Scholar 

  6. A. Wallace and G. Amsden. Is it really OK to take this with food? Old interactions with a new twist. J. Clin. Pharmacol. 42:435441 (2002).

    Google Scholar 

  7. W. Abebe. Herbal Medication: potential for adverse interactions with analgesic drugs. J. Clin. Pharm. Ther. 27:391401 (2002).

    Google Scholar 

  8. R. Walgren, K. Walle, and T. Walle. Transport of quercetin and its glucosides across human intestinal epithelial Caco-2 cells. Bio-chem. Pharmacol. 55:17211727 (1998).

    Google Scholar 

  9. R. Walgren, K. Karnaky, G. Lindenmayer, and T. Walle. Efflux of dietary flavonoid quercetin 4--β--glucoside across human intes-tinal Caco-2 cell monolayers by apical multidrug resistance-associated protein-2. J. Pharmacol. Exp. Ther. 294:830836 (2000).

    Google Scholar 

  10. R. Walgren, J.-T. Lin, R. Kinne, and T. Walle. Cellular uptake of dietary flavonoid quercetin 4--β--glucoside by sodium-dependent glucose transporter SGLT1. J. Pharmacol. Exp. Ther. 294:837 843 (2000).

    Google Scholar 

  11. P. Artursson. Epithelial transport of drugs I. A model for study-ing the transport of drugs (_-blocking agents) over an intestinal epithelial cell line (Caco-2). J. Pharm. Sci. 79:476482 (1990).

    Google Scholar 

  12. P. Artursson, K. Palm, and K. Luthman. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Deliv. Rev. 22:6784 (1996).

    Google Scholar 

  13. L.-S. Gan and D. Thakker. Applications of the Caco-2 model in the design and development of orally active drugs: elucidation of biochemical and physical barriers posed by the intestinal epithe-lium. Adv. Drug Deliv. Rev. 23:7798 (1997).

    Google Scholar 

  14. G. L. Amidon, H. Lennernäs, V. P. Shah, and J. R. Crison. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bio-availability. Pharm. Res. 12:413420 (1995).

    Google Scholar 

  15. M. Markowska, S. Oberle, C.-P. Juzwin, M. Hsu, M. Gryszk-iewicz, and A. J. Streeter. Optimizing Caco-2 cell monolayers to increase throughput in drug intestinal absorption analysis. J. Pharmacol. Toxicol. Methods 46:5155 (2001).

    Google Scholar 

  16. C. Tannergren, P. Langguth, and K.-J. Hoffmann. Compound mixtures in Caco-2 cell permeability screens as a means to in-crease screening capacity. Pharmazie 56:337342 (2001).

    Google Scholar 

  17. L. Laitinen, H. Kangas, A. M. Kaukonen, K. Hakala, T. Kotiaho, R. Kostiainen, and J. Hirvonen. N-in-one permeability studies of heterogeneous sets of compounds across Caco-2 cell monolayers. Pharm. Res. 20:187197 (2003).

    Google Scholar 

  18. A. Palou, F. Serra, and C. Pico. General aspects of the assessment of functional foods in the European Union. Eur. J. Clin. Nutr. 57:S12S17 (2003).

    Google Scholar 

  19. J.-P. Rauha, J.-L. Wolfender, J.-P. Salminen, K. Pihlaja, K. Hostettmann, and H. Vuorela. Characterization of the polyphe-nolic composition of purple loosestrife (Lythrum salicaria). Zeitschr. Naturforsch. 56C:1320 (2001).

    Google Scholar 

  20. H. J. D. Dorman, A. Peltoketo, R. Hiltunen, and M. J. Tikkanen. Laitinen et al. 1914.Characterisation of the antioxidant properties of de-odourised aqueous extracts from selected Lamiaceaeherbs. Food Chem. 83:255262 (2003).

    Google Scholar 

  21. V. L. Singleton, R. Orthofer, and R. M. Lamuela-Raventós. Analysis of total phenols and other oxidants by means of Folin-Ciocalteu reagent. Meth. Enzym. 299:152178 (1999).

    Google Scholar 

  22. T. Mosman. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immun. Meth. 65:5563 (1983).

    Google Scholar 

  23. M. P. Kahkönen, A. Hopia, and M. Heinonen. Berry phenolics and their antioxidant activity. J. Agric. Food Chem. 49:40764082 (2001).

    Google Scholar 

  24. R. Puupponen-Pimia, L. Nohynek, C. Meier, M. Kahkönen, M. Heinonen, A. Hopia, and K.-M. Oksman-Caldentey. Antimicrobial properties of phenolic compounds from berries. J. Appl. Mi-crobiol. 90:494507 (2001).

    Google Scholar 

  25. M. Kähkönen, A. Hopia, H. Vuorela, J.-P. Rauha, K. Pihlaja, T. Kujala, and M. Heinonen. Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 47:3954 3962 (1999).

    Google Scholar 

  26. S. Häkkinen, M. Heinonen, S. Kärenlampi, H. Mykkänen, J. Ruuskanen, and R. Törrönen. Screening of selected flavonoids and phenolic acids in 19 berries. Food Res. Int. 32:345353 (1999).

    Google Scholar 

  27. H. Takanaga, I. Tamai, and A. Tsuji. pH-dependent and carrier-mediated transport of salicylic acid across Caco-2 cells. J. Pharm. Pharmacol. 46:567570 (1994).

    Google Scholar 

  28. T. Tsuruo, H. Iida, S. Tsukagoshi, and Y. Sakurai. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res. 41:19671972 (1981).

    Google Scholar 

  29. S. Orlowski, L. Mir, J. Belehradek, and M. Garrigos. Effects of steroids and verapamil on P-glycoprotein ATPase activity: pro-gesterone, desoxycorticosterone corticosterone and verapamil are mutually non-exclusive modulators. Biochem. J. 317:515522 (1996).

    Google Scholar 

  30. S. Doppenschmitt, H. Spahn-Langguth, C. G. Regårdh, and P. Langguth. Role of P-glycoprotein-mediated secretion in absorp-tive drug permeability: an approach using passive membrane per-meability and affinity to P-glycoprotein. J. Pharm. Sci. 88:1067 1072 (1999).

    Google Scholar 

  31. B. Nare, R. K. Prichard, and E. Georges. Characterization of rhodamine-123 binding to P-glycoprotein in human multidrug-resistant cells. Mol. Pharmacol. 45:11451152 (1994).

    Google Scholar 

  32. S. D. Flanagan, L. H. Takahashi, X. Liu, and L. Z. Benet. Con-tributions of saturable active secretion, passive transcellular, and paracellular diffusion to the overall transport of furosemide across adenocarcinoma (Caco-2) cells. J. Pharm. Sci. 91:1169 1177 (2002).

    Google Scholar 

  33. B. D. Oomah and G. Mazza. Effect of dehulling on chemical composition and physical properties of flax seed. Lebensm.-wiss. u.-Technol. 30:135140 (1997).

    Google Scholar 

  34. V. Klein, V. Chajès, E. Germain, G. Schulgen, M. Pinault, D. Malvy, T. Lefrancq, A. Fignon, O. Le Floch, C. Lhuillery, and P. Bougnoux. Low alpha-linolenic acid content of adipose breast tissue is associated with increased risk of breast cancer. Eur. J. Cancer 36:335340 (2000).

    Google Scholar 

  35. J. Bruneton. Pharmacognosy, Phytochemistry, Medicinal Plants. Lavoisier Publishing, Paris, France, pp. 105106 (1995).

    Google Scholar 

  36. J.-P. Rauha, S. Remes, M. Heinonen, A. Hopia, M. Kähkönen, T. Kujala, K. Pihlaja, H. Vuorela, and P. Vuorela. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int. J. Food Microbiol. 56:312 (2000).

    Google Scholar 

  37. A. Saleem, H. Kivela, and K. Pihlaja. Antioxidant activity of pine bark constituents. Zeitschr. Naturforsch 58C:351354 (2003).

    Google Scholar 

  38. L. Packer, G. Rimbach, and F. Virgili. Antioxidant acitivity and biologic properties of a procyanidin-rich extract from pine (Pinus marittima) bark, pycnogenol. Free Radic. Biol. Med. 27:704724 (1999).

    Google Scholar 

  39. M. Nardini, C. Scaccini, L. Packer, and F. Virgili. In vitro inhi-bition of the activity of phosphorylase kinase, protein kinase C and protein kinase A by caffeic acid and a procyanidin-rich pine bark (Pinus marittima) extract. Biochim. Biophys. Acta 1474:219 225 (2000).

    Google Scholar 

  40. S. Neuhoff, A.-L. Ungell, I. Zamora, and P. Artursson. pH-dependent bi-directional transport of weakly basic drugs across Caco-2 monolayers: implications for drug-drug interactions. Pharm. Res. 20:11411148 (2003).

    Google Scholar 

  41. M. Sakai, A. B. J. Noach, M. C. M. Blom-Roosemalen, A. G. deBoer, and D. D. Breimer. Absorption enhancement of hydro-philic compounds by verapamil in Caco-2 cell monolayers. Bio-chem. Pharmacol. 48:11991210 (1994).

    Google Scholar 

  42. M. Ollanketo, A. Peltoketo, K. Hartonen, R. Hiltunen, and M.-L. Riekkola. Extraction of sage (Salvia officinalisL.) by pressurized hot water and conventional methods: antioxidant activity of the extracts. Eur. Food Res. Technol. 215:158163 (2002).

    Google Scholar 

  43. Y. Liu and M. Hu. Absorption and metabolism of flavonoids in the Caco-2 cell culture model and a perfused rat intestinal model. Drug Metab. Disp. 30:370377 (2002).

    Google Scholar 

  44. K. Murota, S. Shimizu, S. Miyamoto, T. Izumi, A. Obata, and M. Kikuchi. and J. Terao. Unique uptake and transport of isoflavone aglycones by human intestinal Caco-2 cells: comparison of isofla-vonoids and flavonoids. J. Nutr. 132:19561961 (2002).

    Google Scholar 

  45. U. K. Walle, K. L. French, R. A. Walgren, and T. Walle. Trans-port of genistein-7-glucoside by human intestinal Caco-2 cells: potential role for MRP2. Res. Comm. Mol. Pathol. Pharmacol. 103:4556 (1999).

    Google Scholar 

  46. A. F. Castro and G. A. Altenberg. Inhibition of drug transport by genistein in multidrug-resistant cells expressing P-glycoprotein. Biochem. Pharmacol. 53:8993 (1997).

    Google Scholar 

  47. C. Pascaud, M. Garrigos, and S. Orlowski. Multidrug resistance transporter P-glycoprotein has distinct but interacting binding sites for cytotoxic drugs and reversing agents. Biochem. J. 333:351358 (1998).

    Google Scholar 

  48. D. G. Bailey, J. Malcolm, O. Arnold, and J. D. Spence. Grape-fruit juice-drug interactions. Br. J. Clin. Pharmacol. 46:101110 (1998).

    Google Scholar 

  49. V. A. Eagling, L. Profit, and D. J. Back. Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-1 protease inhibitor saquinavir by grape-fruit juice components. Br. J. Clin. Pharmacol. 48:543552 (1999).

    Google Scholar 

  50. C. A. Plouzek, H. P. Ciolino, R. Clarke, and G. C. Yeh. Inhibition of P-glycoprotein activity and reversal of multidrug resistance in vitro by rosemary extract. Eur. J. Cancer 35:15411545 (1999).

    Google Scholar 

  51. P. Knekt, R. Järvinen, and A. Reunanen. and J. Maatela. Flavo-noid intake and coronary mortality in Finland: a cohort study. BMJ 312:478481 (1996).

    Google Scholar 

  52. L. Le Marchand, S. P. Murphy, J. H. Hankin, L. R. Wilkens, and L. N. Kolonel. Intake of flavonoids and lung cancer. J. Natl. Cancer Inst. 92:154160 (2000).

    Google Scholar 

  53. C. Manach, C. Morand, O. Texier, M. L. Favier, G. Agullo, C. Demigne, F. Regerat, and C. Remesy. Quercetin metabolites in plasma of rats fed diets containing rutin or quercetin. J. Nutr. 125:19111922 (1995).

    Google Scholar 

  54. I. Erlund, T. Kosonen, G. Alfthan, J. Maenpaa, K. Perttunen, J. Kenraali, J. Parantainen, and A. Aro. Pharmacokinetics of quer-cetin from quercetin aglycone and rutin in healthy volunteers. Eur. J. Clin. Pharmacol. 56:545553 (2000).

    Google Scholar 

  55. J. Vaidyanathan and T. Walle. Transport and metabolism of the tea flavonoid (-)-epicathecin by the human intestinal cell line Caco-2. Pharm. Res. 18:14201425 (2001).

    Google Scholar 

  56. K. J. Dabrowski and F. W. Sosulski. Composition of free and hydrolysable phenolic acids in defatted flours of ten oilseeds. J. Agric. Food Chem. 32:128331 (1984).

    Google Scholar 

  57. R. K. Harris and W. J. Haggerty. Assays for potentially anticar-cinogenic phytochemicals in flax seed. Cereal Foods World 38:147151 (1993).

    Google Scholar 

  58. T. Kraushofer and G. Sonntag. Determination of some phenolic compounds in flax seed and nettle roots by HPLC with coulo-metric electrode array detection. Eur. Food Res. Technol. 215:529533 (2002).

    Google Scholar 

  59. W. H. Morrison and D. E. Akin. Chemical composition of components comprising bast tissue in flax. J. Agric. Food Chem. 49:23332338 (2001).

    Google Scholar 

  60. B. D. Oomah, G. Mazza, and E. O. Kenaschuk. Cyanogenic com-pounds in flaxseed. J. Agric. Food Chem. 40:13461348 (1992).

    Google Scholar 

  61. R. R. Paris and M. Paris. Sur les pigments anthocyaniques de la Salicaire (Lythrum salicariaL.). Compt. Rend 258:361364 (1967).

    Google Scholar 

  62. M. T. Torrent Marti. Estudio farmacognóstico de Lythrum sali-caria L. Circ. Farm. 33:265307 (1975).

    Google Scholar 

  63. X. Ma, C. Ji, Y. Wang, G. Zhang, and Y. Liu. New tannins from Lythrum salicariaL. J. Chin. Pharm. Sci. 5:225 (1996).

    Google Scholar 

  64. E. Fujita, Y. Saeki, M. Ochiai, and T. Inoue. Investigation of the neutral constituents of Lythrum salicaria. Bull. Inst. Chem. Res. Kyoto Univ. 50:327331 (1972).

    Google Scholar 

  65. H. Pan and L. Lundgren. Phenolics from inner bark of Pinus Sylvestris. Phytochemistry 42:11851189 (1996).

    Google Scholar 

  66. J. Wilska-Jezka, J. Los, and M. Pawlak. Wild plant fruits as a source of catechins and proanthocyanidins. Bull. Liaison-Groupe Polyphenols 16:246250 (1992).

    Google Scholar 

  67. S. Häkkinen and S. Auriola. High-performance liquid chroma-tography with electrospray ionization mass spectrometry and di-ode array ultraviolet detection in the identification of flavonol aglycones and glycosides in berries. J. Chromatogr. A. 829:91100 (1998).

    Google Scholar 

  68. R. Huopalahti, E. P. Jarvenpaa, and K. Katina. A novel solid-phase extraction-HPLC method for the analysis of anthocyanin and organic acid composition of Finnish cranberry. J. Liq. Chrom. & Rel. Technol. 23:26952701 (2000).

    Google Scholar 

  69. Ø. M. Andersen. Chromatographic separation of anthocyanins in cowberry (lingon berry) Vaccinium vites-idaeaL. J. Food Sci. 50:12301232 (1985).

    Google Scholar 

  70. W. Henning. Flavonolglykoside der Erdbeeren (Fragaria x ananassaDuch.), Himbeeren (Rubus idaeusL.) und Brombeeren (Rubus fruticosusL.). Z. Lebensm. Unters. Forsch. 173:180187 (1981).

    Google Scholar 

  71. I. C. W. Arts, B. van de Putte, and P. C. H. Hollman. Catechin contents of foods commonly consumed in the Netherlands. 1. Fruits, vegetables, staple foods and processed foods. J. Agric. Food Chem. 48:17461751 (2000).

    Google Scholar 

  72. I. P. Gerothanassis, V. Exarchou, V. Lagouri, A. Troganis, M. Tsimidou, and D. Boskou. Methodology for identification of phe-nolic acids in complex phenolic mixtures by high-resolution two-dimensional nuclear magnetic resonance. Application to metha-nolic extracts of two oregano species. J. Agric. Food Chem. 46:41854192 (1998).

    Google Scholar 

  73. M. Kosar, H. J. P. Dorman, O. Bachmayer, K. H. C. Basel, and R. Hiltunen. An improved on-line HPLC-DPPH* method for the screening of free radical scavenging compounds in water extracts of Lamiaceae plants. Chem. Nat. Comp. 39:161166 (2003).

    Google Scholar 

  74. G. Zgórka and K. Glowniak. Variation of free phenolic acids in medicinal plants belonging to the Lamiaceaefamily. J. Pharm. Biomed. Anal. 26:7987 (2001).

    Google Scholar 

  75. W. Zheng and S. Y. Wang. Antioxidant acitivity and phenolic compounds in selected herbs. J. Agric. Food Chem. 49:51655170 (2001).

    Google Scholar 

  76. P. B. Andrade, R. M. Seabra, P. Valentāo, and F. Areias. Simul-taneous determination of flavonoids, phenolic acids and couma-rins in seven medicinal species by HPLC/diode array detector. J. Liq. Chrom. & Rel. Technol. 21:28132820 (1998).

    Google Scholar 

  77. L. Pizzale, R. Bortolomeazzi, S. Vichi, E. Überegger, and L. S. Conte. Antioxidant activity of sage (Salvia officinalis and S fru-ticosa) and oregano (Origanum onitesand O indercedens) ex-tracts related to their phenolic compound content. J. Sci. Food Agric. 82:16451651 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laitinen, L.A., Tammela, P.S.M., Galkin, A. et al. Effects of Extracts of Commonly Consumed Food Supplements and Food Fractions on the Permeability of Drugs Across Caco-2 Cell Monolayers. Pharm Res 21, 1904–1916 (2004). https://doi.org/10.1023/B:PHAM.0000045246.94064.ab

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000045246.94064.ab

Navigation