Skip to main content
Log in

Application of Novel Solid Lipid Nanoparticle (SLN)-Gene Vector Formulations Based on a Dimeric HIV-1 TAT-Peptide in Vitro and in Vivo

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To optimize gene delivery of SLN-based gene vectors by incorporation of a dimeric HIV-1 TAT peptide (TAT2) into SLN gene vectors.

Methods. Plasmid DNA was complexed with two SLN preparations either with or without pre-compaction of DNA by TAT2, poly-l-arginine, or the mutant TAT2-M1. DNA complexed with polyethylenimine (PEI) served as a standard. Gene expression was analyzed upon transfection of bronchial epithelial cells in vitro and after intratracheal instillation or aerosol application to the lungs of mice in vivo. Stability of DNA was analyzed by agarose gel electrophoresis.

Results. Incorporation of TAT2 into SLN gene vectors induced an up to 100-fold sequence-dependent increase of gene expression as compared with the mutant TAT2-M1 and was 4- to 8-times higher as compared with PEI in vitro. In vivo application of TAT2-SLN gene vectors via jet nebulization increased SLN-based gene expression but was accompanied with DNA degradation. DNA degradation was not observed when an innovative device operating on the principle of a perforated vibrating membrane was used.

Conclusions. Incorporation of TAT2 into SLN gene vectors is suitable to optimize gene transfer in vitro. The use of a mild nebulization technology avoids DNA degradation and offers the opportunity for further studies in large animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. Olbrich, U. Bakowsky, C. M. Lehr, R. H. Muller, and C. Kneuer. Cationic solid-lipid nanoparticles can efficiently bind and transfect plasmid DNA. J. Control. Rel. 77:345-355 (2001).

    Google Scholar 

  2. K. Tabatt, M. Sameti, C. Olbrich, R. H. Muller, and C. M. Lehr. Effect of cationic lipid and matrix lipid composition on solid lipid nanoparticle-mediated gene transfer. Eur. J. Pharm. Biopharm. 57:155-162 (2004).

    Google Scholar 

  3. S. Chesnoy and L. Huang. Structure and function of lipid-DNA complexes for gene delivery. Annu. Rev. Biophys. Biomol. Struct. 29:27-47 (2000).

    Google Scholar 

  4. T. Merdan, J. Kopecek, and T. Kissel. Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv. Drug Deliv. Rev. 54:715-758 (2002).

    Google Scholar 

  5. W. Mehnert and K. Mader. Solid lipid nanoparticles: production, characterization and applications. Adv. Drug Deliv. Rev. 47:165-196 (2001).

    Google Scholar 

  6. R. H. Müller, A. Dingler, T. Schneppe, and S. Gohla. Large scale production of solid lipid nanoparticles (SLN) and nanodispersions (DissoCubes). In D. Wise (ed.), Handbook of Pharmaceutical Controlled Release Technology, Marcel Dekker Inc, New York, 2000.

    Google Scholar 

  7. A. Dingler and S. Gohla. Production of solid lipid nanoparticles (SLN): scaling up feasibilities. J. Microencapsul. 19:11-16 (2002).

    Google Scholar 

  8. C. Freitas and R. H. Muller. Correlation between long-term stability of solid lipid nanoparticles (SLN) and crystallinity of the lipid phase. Eur. J. Pharm. Biopharm. 47:125-132 (1999).

    Google Scholar 

  9. C. Schwarz, W. Mehnert, J. S. Lucks, and R. H. Muller. Solid Lipid Nanoparticles (Sln) For Controlled Drug Delivery.1. Production, Characterization and Sterilization. J. Control. Rel. 30: 83-96 (1994).

    Google Scholar 

  10. C. Schwarz and W. Mehnert. Freeze-Drying of Drug-Free and Drug-Loaded Solid Lipid Nanoparticles (Sln). Int. J. Pharm. 157: 171-179 (1997).

    Google Scholar 

  11. R. H. Muller, K. Mader, and S. Gohla. Solid lipid nanoparticles (SLN) for controlled drug delivery — a review of the state of the art. Eur. J. Pharm. Biopharm. 50:161-177 (2000).

    Google Scholar 

  12. C. L. Gebhart and A. V. Kabanov. Evaluation of polyplexes as gene transfer agents. J. Control. Rel. 73:401-416 (2001).

    Google Scholar 

  13. A. Bragonzi, G. Dina, A. Villa, G. Calori, A. Biffi, C. Bordignon, B. M. Assael, and M. Conese. Biodistribution and transgene expression with nonviral cationic vector/DNA complexes in the lungs. Gene Ther. 7:1753-1760 (2000).

    Google Scholar 

  14. P. Chollet, M. C. Favrot, A. Hurbin, and J. L. Coll. Side-effects of a systemic injection of linear polyethylenimine-DNA complexes. J. Gene Med. 4:84-91 (2002).

    Google Scholar 

  15. C. Rudolph, J. Lausier, S. Naundorf, and R. H. Muller. and J. Rosenecker. In vivo gene delivery to the lung using polyethylenimine and fractured polyamidoamine dendrimers. J. Gene Med. 2:269-278 (2000).

    Google Scholar 

  16. A. N. Uduehi, U. Stammberger, B. Kubisa, M. Gugger, T. A. Buehler, and R. A. Schmid. Effects of linear polyethylenimine and polyethylenimine/DNA on lung function after airway instillation to rat lungs. Mol. Ther. 4:52-57 (2001).

    Google Scholar 

  17. C. Rudolph, C. Plank, J. Lausier, U. Schillinger, and R. H. Muller. and J. Rosenecker. Oligomers of the arginine-rich motif of the HIV-1 TAT protein are capable of transferring plasmid DNA into cells. J. Biol. Chem. 8:8 (2003).

    Google Scholar 

  18. A. D. Frankel and C. O. Pabo. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55:1189-1193 (1988).

    Google Scholar 

  19. S. Fawell, J. Seery, Y. Daikh, C. Moore, L. L. Chen, and B. Pepinsky. and J. Barsoum. Tat-mediated delivery of heterologous proteins into cells. Proc. Natl. Acad. Sci. USA 91:664-668 (1994).

    Google Scholar 

  20. R. Truant and B. R. Cullen. The arginine-rich domains present in human immunodeficiency virus type 1 Tat and Rev function as direct importin beta-dependent nuclear localization signals. Mol. Cell. Biol. 19:1210-1217 (1999).

    Google Scholar 

  21. C. Plank, M. X. Tang, A. R. Wolfe, and F. C. Szoka Jr. Branched cationic peptides for gene delivery: role of type and number of cationic residues in formation and in vitro activity of DNA polyplexes. Hum. Gene Ther. 10:319-332 (1999).

    Google Scholar 

  22. J. Zabner, A. J. Fasbender, T. Moninger, K. A. Poellinger, and M. J. Welsh. Cellular and molecular barriers to gene transfer by a cationic lipid. J. Biol. Chem. 270:18997-19007 (1995).

    Google Scholar 

  23. K. Ciftci and R. J. Levy. Enhanced plasmid DNA transfection with lysosomotropic agents in cultured fibroblasts. Int. J. Pharm. 218:81-92 (2001).

    Google Scholar 

  24. S. Sandgren, F. Cheng, and M. Belting. Nuclear targeting of macromolecular polyanions by an HIV-Tat derived peptide. Role for cell-surface proteoglycans. J. Biol. Chem. 277:38877-38883 (2002).

    Google Scholar 

  25. I. A. Ignatovich, E. B. Dizhe, A. V. Pavlotskaya, B. N. Akifiev, S. V. Burov, S. V. Orlov, and A. P. Perevozchikov. Complexes of plasmid DNA with basic domain 47-57 of the HIV-1 Tat protein are transferred to mammalian cells by endocytosis-mediated pathways. J. Biol. Chem. 278:42625-42636 (2003).

    Google Scholar 

  26. L. Wightman, R. Kircheis, V. Rossler, S. Carotta, R. Ruzicka, M. Kursa, and E. Wagner. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J. Gene Med. 3:362-372 (2001).

    Google Scholar 

  27. S. M. Zou, P. Erbacher, J. S. Remy, and J. P. Behr. Systemic linear polyethylenimine (L-PEI)-mediated gene delivery in the mouse. J. Gene Med. 2:128-134 (2000).

    Google Scholar 

  28. C. L. Densmore, F. M. Orson, B. Xu, B. M. Kinsey, J. C. Waldrep, P. Hua, B. Bhogal, and V. Knight. Aerosol delivery of robust polyethyleneimine-DNA complexes for gene therapy and genetic immunization. Mol. Ther. 1:180-188 (2000).

    Google Scholar 

  29. M. Ogris, P. Steinlein, M. Kursa, K. Mechtler, R. Kircheis, and E. Wagner. The size of DNA/transferrin-PEI complexes is an important factor for gene expression in cultured cells. Gene Ther. 5:1425-1433 (1998).

    Google Scholar 

  30. D. Finsinger, J. S. Remy, P. Erbacher, C. Koch, and C. Plank. Protective copolymers for nonviral gene vectors: synthesis, vector characterization and application in gene delivery. Gene Ther. 7: 1183-1192 (2000).

    Google Scholar 

  31. D. Oupicky, M. Ogris, K. A. Howard, P. R. Dash, K. Ulbrich, and L. W. Seymour. Importance of lateral and steric stabilization of polyelectrolyte gene delivery vectors for extended systemic circulation. Mol. Ther. 5:463-472 (2002).

    Google Scholar 

  32. C. Rudolph and R. H. Muller. and J. Rosenecker. Jet nebulization of PEI/DNA polyplexes: physical stability and in vitro gene delivery efficiency. J. Gene Med. 4:66-74 (2002).

    Google Scholar 

  33. A. Gautam, C. L. Densmore, B. Xu, and J. C. Waldrep. Enhanced gene expression in mouse lung after PEI-DNA aerosol delivery. Mol. Ther. 2:63-70 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudolph, C., Schillinger, U., Ortiz, A. et al. Application of Novel Solid Lipid Nanoparticle (SLN)-Gene Vector Formulations Based on a Dimeric HIV-1 TAT-Peptide in Vitro and in Vivo . Pharm Res 21, 1662–1669 (2004). https://doi.org/10.1023/B:PHAM.0000041463.56768.ec

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000041463.56768.ec

Navigation