Skip to main content
Log in

Cyclodextrins in Nasal Delivery of Low-Molecular-Weight Heparins: In Vivo and in Vitro Studies

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To test the hypothesis that cyclodextrins reversibly enhance nasal absorption of low-molecular-weight heparins (LMWHs) and to investigate the mechanisms by which cyclodextrins enhance LMWH absorption via the nose.

Methods. Absorption of LMWHs was studied by measuring plasma anti-factor Xa activity after nasal administration of various LMWH formulations to anesthetized rats. In vivo reversibility studies were performed to investigate if the effects of cyclodextrins are reversible and diminish with time. The absorption-enhancing mechanisms of cyclodextrins were investigated in cell culture model. The transport of enoxaparin and mannitol, changes in transepithelial electrical resistance (TEER), and distribution of tight junction protein ZO-1 were investigated.

Results. Formulations containing 5% dimethyl-β-cyclodextrin (DMβCD) produced the highest increase in the bioavailability of LMWH preparations tested. In vivo reversibility studies with 5% DMβCD showed that the effect of the absorption enhancer at the site of administration diminished with time. Transport studies using 16HBE14o cells demonstrated that the increase in the permeability of enoxaparin and mannitol, reduction in TEER, and the changes in the tight junction protein ZO-1 distribution produced by 5% DMβCD were much greater than those produced by β-cyclodextrin (βCD) or hydroxyl-propyl-β-cyclodextrin (HPβCD).

Conclusions. Of the cyclodextrins tested, DMβCD was the most efficacious in enhancing absorption of LMWHs both in vivo and in vitro. The study also suggests that cyclodextrins enhance nasal drug absorption by opening of cell-cell tight junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. W. Chien, K. S. E. Su, and S. Chang. Nasal systemic drug delivery, 1st Ed. Marcel Dekker, New York, 1989.

    Google Scholar 

  2. C. R. Behl, H. K. Pimplaskar, A. P. Sileno, W. J. Xia, W. J. Gries, J. C. deMeireles, and V. D. Romeo. Optimization of systemic nasal drug delivery with pharmaceutical excipients. Adv. Drug Del. Rev 29:117-133 (1998).

    Google Scholar 

  3. M. I. Ugwoke, N. Verbeke, and R. Kinget. The biopharmaceutical aspects of nasal mucoadhesive drug delivery. J. Pharm. Pharmacol. 53:3-22 (2001).

    Google Scholar 

  4. T. Irie, K. Wakamatsu, H. Arima, H. Aritomi, and K. Uekama. Enhancing effects of cyclodextrins on nasal absorption of insulin in rats. Int. J. Pharm. 84:129-139 (1992).

    Google Scholar 

  5. K. Matsubara, K. Abe, T. Irie, and K. Uekama. Im provement of nasal bioavailability of luteinizing hormone-releasing hormone agonist, buserelin, by cyclodextrin derivatives in rats. J. Pharm. Sci. 84:1295-1300 (1995).

    Google Scholar 

  6. Y. Watanabe, Y. Matsumoto, K. Kawamoto, S. Yazawa, and M. Matsumoto. Enhancing effects of cyclodextrins on nasal absorption of insulin and its duration in rabbits. Chem. Pharm. Bull. 40:3100-3104 (1992).

    Google Scholar 

  7. E. Marttin, J. C. Verhoef, and F. W. H. M. Merkus. Efficacy, safety and mechanism of cyclodextrins as absorption enhancers in nasal delivery of peptide and protein drugs. J. Drug Target. 6:17-36 (1998).

    Google Scholar 

  8. R. I. Shulman. Assessment of low-molecular-weight heparin trials in cardiology. Pharm. Ther. 87:1-9 (2000).

    Google Scholar 

  9. J. J. Arnold, F. Ahsan, E. Meezan, and D. J. Pillion. Nasal administration of low molecular weight heparin. J. Pharm. Sci. 91:1707-1714 (2002).

    Google Scholar 

  10. P. Augustijns, P. Annaert, P. Heylen, G. Van den Mooter, and R. Kinget. Drug absorption studies of prodrug ester using the Caco2 model: evaluation of ester hydrolysis and transepithelial transport. Int. J. Pharm. 166:45-53 (1998).

    Google Scholar 

  11. J. Fareed, F. Kaiding, L. H. Yang, and D. A. Hoppensteadt. Pharmacokinetics of low molecular weight heparins in animal models. Semin. Thromb. Hemost. 25:51-55 (1999).

    Google Scholar 

  12. L. Bara and M. Samama. Pharmacokinetics of low molecular weight heparin. Acta Chir. Scand. Suppl. 543:65-72 (1988).

    Google Scholar 

  13. F. Ahsan, J. J. Arnold, T. Yang, E. Meezan, E. M. Schweibert, and D. J. Pillion. gb-cyclodextrin, on insulin movement across human bronchial epithelial cells (16HBE14o-). Eur. J. Pharm. Sci. 20:27-34 (2003).

    Google Scholar 

  14. C. Meaney, B. I. Florea, C. Ehrhardt, U. F. Schäfer, C. Lehr, H. E. Junginger, and G. Borchard. Bronchial epithelial cell cultures. In C. Lehr (ed.), Cell Culture Models of Biological Barriers, In-Vitro Test Systems for Drug Absorption and Delivery, 1st Ed., Taylor and Francis, New York, 2002, pp. 211-227.

    Google Scholar 

  15. T. J. Abbruscato, S. P. Lopez, K. S. Mark, B. T. Hawkins, and T. P. Davis. Nicotine and cotinine modulate cerebral microvascular permeability and protein expression of ZO-1 through nicotinic acetylcholine receptors expressed on brain endothelial cells. J. Pharm. Sci. 91:2525-2538 (2002).

    Google Scholar 

  16. F. W. H. M. Merkus, N. G. M. Schipper, W. A. J. J. Hermens, S. G. Romeijn, and J. C. Verhoef. Absorption enhancers in nasal drug delivery: efficacy and safety. J. Controlled Release 24:201-208 (1993).

    Google Scholar 

  17. Physician's Desk Reference. Medical Economic Company Inc., Montvale, NJ, 2002.

  18. E. Marttin, N. G. M. Schipper, J. C. Verhoef, and F. W. H. M. Merkus. Nasal mucociliary clearance as a factor in nasal drug delivery. Adv. Drug Del. Rev. 29:13-38 (1998).

    Google Scholar 

  19. W. A. J. J. Hermens, C. W. J. Belder, J. M. W. M. Merkus, P. M. Hooymans, J. Verhoef, and F. W. H. M. Merkus. Intranasal estradiol administration to oophorectomized women. Eur. J. Obstet. Gynecol. Reprod. Biol. 40:35-41 (1991).

    Google Scholar 

  20. W. A. J. J. Hermens, C. W. J. Belder, J. M. W. M. Merkus, P. M. Hooymans, J. Verhoef, and F. W. H. M. Merkus. Intranasal administration of estradiol in combination with progesterone to oophorectomized women: a pilot study. Eur. J. Obstet. Gynecol. Reprod. Biol. 43:65-70 (1992).

    Google Scholar 

  21. K. Asai, M. Morishita, H. Datsuta, S. Hosoda, K. Shinomiya, M. Noro, T. Nagai, and K. Takayama. The effects of water-soluble cyclodextrins on the histological integrity of the rat nasal mucosa. Int. J. Pharm. 246:25-35 (2002).

    Google Scholar 

  22. N. Haffejee, J. D. Plessis, D. G. Muller, C. Schultz, A. F. Kotze, and C. Goosen. Intranasal toxicity of selected absorption enhancers. Pharmazie 56:882-888 (2001).

    Google Scholar 

  23. N. Washington, C. Washington, and C. G. Wilson. Physiological Pharmaceutics (Barriers to Drug Absorption), 2nd Ed., Taylor and Francis, New York, 2001, pp. 225.

    Google Scholar 

  24. J. L. Devalia and R. J. Davies. Human nasal and bronchial epithelial cells in culture: an overview of their characteristics and function. Allergy Proc. 12:71-79 (1991).

    Google Scholar 

  25. S. T. Lim, G. P. Martin, M. B. Brown. In vivo and in vitro characterization of novel microparticulates based on hyaluronan and chitosan hydroglutamate. AAPS Pharmsci. Tech. 2(4): article 20 (2001). http://www.pharmscitech.com.

  26. L. Hovagaard and H. Brondsted. Drug delivery studies in Caco-2 monolayer. IV. Absorption enhancer effects of cyclodextrins. Pharm. Res. 12:1328-1332 (1995).

    Google Scholar 

  27. Z. Shao, R. Krishnamoorthy, and A. K. Mitra. Cyclodextrins as nasal absorption promoters of insulin: mechanistic evaluations. Pharm. Res. 9:1157-1163 (1992).

    Google Scholar 

  28. E. Marttin, J. C. Verhoef, S. G. Romeijn, and F. W. H. M. Merkus. Effects of absorption enhancers on rat nasal epithelium in vivo: release of marker compounds in the nasal cavity. Pharm. Res. 12:1151-1157 (1995).

    Google Scholar 

  29. L. Szente. and J. Szejtli. Highly soluble cyclodextrin derivatives: chemistry, properties, and trends in development. Adv. Drug Del. Rev. 36:17-28 (1999).

    Google Scholar 

  30. K. Uekama and M. Otagiri. Cyclodextrins in drug carrier systems. CRC Crit. Rev. Ther. Drug Carrier Syst. 3:1-40 (1987).

    Google Scholar 

  31. E. Marttin and J. C. Verhoef. C Cullander, S. G. Romeijn, J. F. Nagelkerke and F. W. H. M. Merkus. Confocal laser scanning microscopic visualization of the transport of dextrans after nasal administration to rats: effects of absorption enhancers. Pharm. Res. 14:631-637 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fakhrul Ahsan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, T., Hussain, A., Paulson, J. et al. Cyclodextrins in Nasal Delivery of Low-Molecular-Weight Heparins: In Vivo and in Vitro Studies. Pharm Res 21, 1127–1136 (2004). https://doi.org/10.1023/B:PHAM.0000032998.84488.7a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000032998.84488.7a

Navigation