Skip to main content
Log in

The Permeability and Cytotoxicity of Insulin-Mimetic Vanadium Compounds

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The aim of this study was to investigate the mechanism of permeation and cytotoxicity of vanadium compounds, [VO(acac)2], [VO(ma)2], and vanadate.

Methods. Absorptive transport were carried out in Caco-2 monolayers grown on transwell inserts. Vanadium was quantified using inductively coupled plasma atomic emission spectrometry (ICP-AES). The change of Caco-2 cells in the microvilli morphology and F-actin structure was visualized by transmission electron microscopy and confocal laser scanning microscopy.

Results. The three vanadium compounds were taken up by Caco-2 cells via simple passive diffusion. [VO(acac)2] were mainly transcellularly transported and exhibited the highest apparent permeabilty coefficients (8.2 × 10-6 cm-1). The cell accumulation of [VO(acac)2] was found to be greater than that of [VO(ma)2], and vanadate caused much less accumulation than the other two compounds. Vanadium compounds induced intracellular reactive oxygen species, reduced the transepithelial electric resistance, caused morphological change in microvilli, and led to different perturbation of F-actin structure.

Conclusions. The three compounds exhibited different permeability due to different diffusion process and cellular uptake. The toxicity of vanadium complexes on Caco-2 monolayer involved F-actin-related change of tight junction and impairment of microvilli. The toxicity was also related to elevated intracellular reactive oxygen species (ROS) and their cellular accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Cohen, M. Halberstam, P. Shlimovich, C. J. Chang, H. Shamoon, and L. Rossetti. Oral vanadyl sulfate improves hepatic and peripheral insulin sensitivity in patients with non-insulin-dependent diabetes mellitus. J. Clin. Invest. 95:2501-2509 (1995).

    Google Scholar 

  2. A. B. Goldfine, D. C. Simonson, F. Folli, M. E. Patti, and C. R. Kahn. In vivo and in vitro studies of vanadate in human and rodent diabetes mellitus. Mol. Cell. Biochem. 153:217-231 (1995).

    Google Scholar 

  3. K. H. Thompson, J. H. McNeill, and C. Orvig. Vanadium compounds as insulin mimics. Chem. Rev. 99:2561-2572 (1999).

    Google Scholar 

  4. C. Orvig, K. H. Thompson, M. Battell, and J. H. McNeill. Vanadium compounds as insulin mimics. Met. Ions Biol. Syst. 31:575-594 (1995).

    Google Scholar 

  5. J. Li, G. Elberg, D. C. Crans, and Y. Shechter. Evidence for the distinct vanadyl(+4)-dependent activating system for manifesting insulin-like effects. Biochemistry 35:8314-8318 (1996).

    Google Scholar 

  6. X. G. Yang, K. Wang, J. F. Lu, and D. C. Crans. Membrane transport of vanadium compounds and the interaction with the erythrocyte membrane. Coord. Chem. Rev. 237:103-111 (2003).

    Google Scholar 

  7. C. Orvig, K. H. Thompson, B. D. Liboiron, J. H. McNeill, and V. G. Yuen. Biolocalization and in vivo coordination chemistry of vanadium pharmaceuticals. J. Inorg. Biochem. 96:14(2003).

    Google Scholar 

  8. I. J. Hidalgo, T. J. Raub, and R. T. Borchardt. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96:736-749 (1989).

    Google Scholar 

  9. S. Yamashita, T. Furubayashi, M. Kataoka, T. Sakane, H. Sezaki, and H. Tokuda. Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. Eur. J. Pharm. Sci. 10:195-204 (2000).

    Google Scholar 

  10. K. H. Thompson, Y. Tsukada, Z. Xu, M. Battell, J. H. McNeill, and C. Orvig. Influence of chelation and oxidation state on vanadium bioavailability, and their effects on tissue concentrations of zinc, copper, and iron. Biol. Trace Elem. Res. 86:31-44 (2002).

    Google Scholar 

  11. J. A. Gordon. Use of vanadate as protein-phosphotyrosine phosphatase inhibitor. Methods Enzymol. 201:477-482 (1991).

    Google Scholar 

  12. V. G. Yuen, P. Caravan, L. Gelmini, N. Glover, J. H. McNeill, I. A. Setyawati, Y. Zhou, and C. Orvig. Glucose-lowering properties of vanadium compounds: comparison of coordination complexes with maltol or kojic acid as ligands. J. Inorg. Biochem. 68:109-116 (1997).

    Google Scholar 

  13. K. H. Thompsonand and C. Orvig. Design of vanadium compounds as insulin enhancing agents. J. Chem. Soc. Dalton Trans. 2885-2892 (2000).

  14. B. A. Reul, S. S. Amin, J. P. Buchet, L. N. Ongemba, D. C. Crans, and S. M. Brichard. Effects of vanadium complexes with organic ligands on glucose metabolism: a comparison study in diabetic rats. Br. J. Pharmacol. 126:467-477 (1999).

    Google Scholar 

  15. D. C. Crans. Chemistry and insulin-like properties of vanadium(IV) and vanadium(V) compounds. J. Inorg. Biochem. 80:123-131 (2000).

    Google Scholar 

  16. T. Mosmann. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65:55-63 (1983).

    Google Scholar 

  17. S. Fraga, B. Sampaio-Maia, M. P. Serrao, and P. Soares-da-Silva. Regulation of apical transporter of L-DOPA in human intestinal Caco-2 cells. Acta Physiol. Scand. 175:103-111 (2002).

    Google Scholar 

  18. W. A. Alrefai, S. Tyagi, F. Mansour, S. Saksena, I. Syed, K. Ramaswamy, and P. K. Dudeja. Sulfate and chloride transport in Caco-2 cells: differential regulation by thyroxine and the possible role of DRA gene. Am. J. Physiol. Gastrointest. Liver Physiol. 280:G603-G613 (2001).

    Google Scholar 

  19. P. Caravan, L. Gelmini, N. Glover, F. G. Herring, H. Li, J. H. McNeill, S. J. Rettig, I. A. Setyawati, E. Shuter, Y. Sun, A. S. Tracey, V. G. Yuen, and C. Orvig. J. Am. Chem. Soc. 117:12759-12770 (1995).

    Google Scholar 

  20. X. G. Yangand and X. D. Yang. ADME/Tox approach in inorganic medicinal chemistry. Prog. Chem. 14:273-278 (2002).

    Google Scholar 

  21. S. J. Stohsand and D. Bagchi. Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med. 18:321-336 (1995).

    Google Scholar 

  22. S. Melov, P. Coskun, M. Patel, R. Tuinstra, B. Cottrell, A. S. Jun, T. H. Zastawny, M. Dizdaroglu, S. I. Goodman, T. T. Huang, H. Miziorko, C. J. Epstein, and D. C. Wallace. Mitochondrial disease in superoxide dismutase 2 mutant mice. Proc. Natl. Acad. Sci. USA 96:846-851 (1999).

    Google Scholar 

  23. M. Arai, H. Imai, T. Koumura, M. Yoshida, K. Emoto, M. Umeda, N. Chiba, and Y. Nakagawa. Mitochondrial phospholipid hydroperoxide glutathione peroxidase plays a major role in preventing oxidative injury to cells. J. Biol. Chem. 274:4924-4933 (1999).

    Google Scholar 

  24. P. Arturssonand and C. Magnusson. Epithelial transport of drugs in cell culture. II: effect of extracellular calcium concentration on the paracellular transport of drugs of different lipophilicities across monolayers of intestinal epithelial (Caco-2) cells. J. Pharm. Sci. 79:595-600 (1990).

    Google Scholar 

  25. S. A. Peralta, J. M. Mullin, K. A. Knudsen, and C. W. Marano. Tissue remodeling during tumor necrosis factor-induced apoptosis in LLC-PK1 renal epithelial cells. Am. J. Phys. 270:F869-F879 (1996).

    Google Scholar 

  26. X. G. Yang, L. Yuan, K. Wang, and X. D. Yang. Comparision of intestinal absorption of two insulin-mimic vanadyl complexes using Caco-2 monolayers as model system. Chinese Science Bulletin 48:876-881 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Da Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, XG., Yang, XD., Yuan, L. et al. The Permeability and Cytotoxicity of Insulin-Mimetic Vanadium Compounds. Pharm Res 21, 1026–1033 (2004). https://doi.org/10.1023/B:PHAM.0000029293.89113.d5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000029293.89113.d5

Navigation