Skip to main content
Log in

Transdermal Delivery of Insulin Using Microneedles in Vivo

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The purpose of this study was to design and fabricate arrays of solid microneedles and insert them into the skin of diabetic hairless rats for transdermal delivery of insulin to lower blood glucose level.

Methods. Arrays containing 105 microneedles were laser-cut from stainless steel metal sheets and inserted into the skin of anesthetized hairless rats with streptozotocin-induced diabetes. During and after microneedle treatment, an insulin solution (100 or 500 U/ml) was placed in contact with the skin for 4 h. Microneedles were removed 10 s, 10 min, or 4 h after initiating transdermal insulin delivery. Blood glucose levels were measured electrochemically every 30 min. Plasma insulin concentration was determined by radioimmunoassay at the end of most experiments.

Results. Arrays of microneedles were fabricated and demonstrated to insert fully into hairless rat skin in vivo. Microneedles increased skin permeability to insulin, which rapidly and steadily reduced blood glucose levels to an extent similar to 0.05-0.5 U insulin injected subcutaneously. Plasma insulin concentrations were directly measured to be 0.5-7.4 ng/ml. Higher donor solution insulin concentration, shorter insertion time, and fewer repeated insertions resulted in larger drops in blood glucose level and larger plasma insulin concentrations.

Conclusions. Solid metal microneedles are capable of increasing transdermal insulin delivery and lowering blood glucose levels by as much as 80% in diabetic hairless rats in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. L. Bronaugh and H. I. Maibach. Percutaneous Absorption: Drugs—Cosmetics—Mechanisms—Methodology, Marcel Dekker, New York, 1999.

    Google Scholar 

  2. M. R. Prausnitz, S. Mitragotri, and R. Langer. Current status and future potential of transdermal drug delivery. Nat. Rev. Drug Discov. 3:115-124 (2004).

    Google Scholar 

  3. E. W. Smith and H. I. Maibach. Percutaneous Penetration Enhancers, CRC Press, Boca Raton, FL, 1995.

    Google Scholar 

  4. B. Berner and S. M. Dinh. Electronically Controlled Drug Delivery, CRC Press, Boca Raton, FL, 1998.

    Google Scholar 

  5. M. J. Jaroszeski, R. Heller, and R. Gilbert. Electrochemotherapy, Electrogenetherapy, and Transdermal Drug Delivery, Humana Press, Totowa, NJ, 1999.

    Google Scholar 

  6. J. Kost. Ultrasound-assisted insulin delivery and noninvasive glucose sensing. Diabetes Technol. Ther. 4:489-497 (2002).

    Google Scholar 

  7. S. D. Senturia. Microsystem Design, Kluwer Academic Publishers, Boston, 2001.

    Google Scholar 

  8. S. P. Davis, B. J. Landis, Z. H. Adams, M. G. Allen, and M. R. Prausnitz. Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force. J. Biomech. (in press)

  9. S. Henry, D. V. McAllister, M. G. Allen, and M. R. Prausnitz. Microfabricated microneedles: a novel approach to transdermal drug delivery. J. Pharm. Sci. 87:922-925 (1998).

    Google Scholar 

  10. D. V. McAllister, P. M. Wang, S. P. Davis, J. H. Park, P. J. Canatella, M. G. Allen, and M. R. Prausnitz. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: novel fabrication methods and transport studies. Proc. Natl. Acad. Sci. USA 100:13755-13760 (2003).

    Google Scholar 

  11. S. Kaushik, A. H. Hord, D. D. Denson, D. V. McAllister, S. Smitra, M. G. Allen, and M. R. Prausnitz. Lack of pain associated with microfabricated microneedles. Anesth. Analg. 92:502-504 (2001).

    Google Scholar 

  12. B. Stoeber and D. Liepmann. Fluid injection through out-of-plane microneedles. In A. Dittmar and D. Beebe (eds.), 1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology, IEEE, Piscataway, NJ, 2000, pp. 224-228.

    Google Scholar 

  13. W. Lin, M. Cormier, A. Samiee, A. Griffin, B. Johnson, C. L. Teng, G. E. Hardee, and P. E. Daddona. Transdermal delivery of antisense oligonucleotides with microprojection patch (Macroflux) technology. Pharm. Res. 18:1789-1793 (2001).

    Google Scholar 

  14. J. A. Matriano, M. Cormier, J. Johnson, W. A. Young, M. Buttery, K. Nyam, and P. E. Daddona. Macroflux microprojection array patch technology: a new and efficient approach for intracutaneous immunization. Pharm. Res. 19:63-70 (2002).

    Google Scholar 

  15. J. A. Mikszta, J. B. Alarcon, J. M. Brittingham, D. E. Sutter, R. J. Pettis, and N. G. Harvey. Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat. Med. 8:415-419 (2002).

    Google Scholar 

  16. D. R. Owens. New horizons—alternative routes for insulin therapy. Nat. Rev. Drug Discov. 1:529-540 (2002).

    Google Scholar 

  17. K. B. Hensel. Electropolishing. Metal Polishing 98:440-448 (2000).

    Google Scholar 

  18. A. K. Graham. Electroplating Engineering Handbook, Van Nostrand Reinhold Co., New York, 1971.

    Google Scholar 

  19. K. C. Tomlinson, S. M. Gardiner, R. A. Hebden, and T. Bennett. Functional consequences of streptozotocin-induced diabetes mellitus, with particular reference to the cardiovascular system. Pharmacol. Rev. 44:103-150 (1992).

    Google Scholar 

  20. P. J. Rousche and R. A. Normann. A method for pneumatically inserting an array of penetrating electrodes into cortical tissue. Ann. Biomed. Eng. 20:413-422 (1992).

    Google Scholar 

  21. J. D. Bancroft and M. Gamble. Theory and Practice of Histological Techniques, Churchill Livingstone, Philadelphia, 2002.

    Google Scholar 

  22. K. Bachmann, D. Pardoe, and D. White. Scaling basic toxicokinetic parameters from rat to man. Environ. Health Perspect. 104:400-407 (1996).

    Google Scholar 

  23. D. W. Sifton. Physicians’ Desk Reference, Medical Economics Co., Montvale, NJ, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Prausnitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martanto, W., Davis, S.P., Holiday, N.R. et al. Transdermal Delivery of Insulin Using Microneedles in Vivo . Pharm Res 21, 947–952 (2004). https://doi.org/10.1023/B:PHAM.0000029282.44140.2e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000029282.44140.2e

Navigation