Skip to main content
Log in

Chitosan Nanoparticles as New Ocular Drug Delivery Systems: in Vitro Stability, in Vivo Fate, and Cellular Toxicity

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To assess the potential of chitosan (CS) nanoparticles for ocular drug delivery by investigating their interaction with the ocular mucosa in vivo and also their toxicity in conjunctival cell cultures.

Methods. Fluorescent (CS-fl) nanoparticles were prepared by ionotropic gelation. The stability of the particles in the presence of lysozyme was investigated by determining the size and their interaction with mucin, by measuring the viscosity of the mucin dispersion. The in vivo interaction of CS-fl nanoparticles with the rabbit cornea and conjunctiva was analyzed by spectrofluorimetry and confocal microscopy. Their potential toxicity was assessed in a human conjunctival cell line by determining cell survival and viability.

Results. CS-fl nanoparticles were stable upon incubation with lysozyme and did not affect the viscosity of a mucin dispersion. In vivo studies showed that the amounts of CS-fl in cornea and conjunctiva were significantly higher for CS-fl nanoparticles than for a control CS-fl solution, these amounts being fairly constant for up to 24 h. Confocal studies suggest that nanoparticles penetrate into the corneal and conjunctival epithelia. Cell survival at 24 h after incubation with CS nanoparticles was high and the viability of the recovered cells was near 100%.

Conclusions. CS nanoparticles are promising vehicles for ocular drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

references

  1. M. B. Sintzel, S. F. Bernatchez, C. Tabatabay, and R. Gurny. Biomaterials in ophthalmic drug delivery. Eur. J. Pharm. Biopharm. 42:358–374 (1996).

    Google Scholar 

  2. A. K. Zimmer and J. Kreuter. Microspheres and nanoparticles used in ocular delivery systems. Adv. Drug Delivery Rev. 16:61–73 (1995).

    Google Scholar 

  3. T. Harmia, P. Speiser, and J. Kreuter. A solid colloidal drug delivery system for the eye: encapsulation of pilocarpin in nanoparticles. J. Microencapsulation 3:3–12 (1986).

    Google Scholar 

  4. C. Losa, P. Calvo, J. L. Vila-Jato, and M. J. Alonso. Improvement of ocular penetration of amikacin sulphate by association to poly(butylcyanoacrylate) nanoparticles. J. Pharm. Pharmacol. 43:548–552 (1991).

    Google Scholar 

  5. C. Losa, L. Marchal-Heussler, F. Orallo, J. L. Vila-Jato, and M. J. Alonso. Design of new formulations for topical ocular administration: polymeric nanocapsules containing metipranolol. Pharm. Res. 10:80–87 (1993).

    Google Scholar 

  6. P. Calvo, A. Sanchez, J. Martinez, M. I. Lopez, M. Calonge, J. C. Pastor, and M. J. Alonso. Polyester nanocapsules as new topical ocular delivery systems for cyclosporin A. Pharm. Res. 13:311–315 (1996).

    Google Scholar 

  7. P. Calvo, M. J. Alonso, J. L. Vila-Jato, and J. R. Robinson. Improved ocular bioavailability of indomethacin by novel ocular drug carriers. J. Pharm. Pharmacol. 48:1147–1152 (1996).

    Google Scholar 

  8. P. Calvo, C. Thomas, M. J. Alonso, J. L. Vila-Jato, and J. R. Robinson. Study of the mechanism of interaction of poly-ɛ-caprolactone nanocapsules with the cornea by confocal laser scanning microscopy. Int. J. Pharm. 295–296 (1990).26. A. Vila, A. Sánchez, M. Tobío, P. Calvo, and M. J. Alonso. De-sign. Int. J. Pharm. 103:283–291 (1994).

    Google Scholar 

  9. P. Calvo, J. L. Vila-Jato, and M. J. Alonso. Comparative in vitro evaluation of several colloidal systems, nanoparticles, nanocapsules and nanoemulsiones as ocular drug carriers. J. Pharm. Sci. 85:530–536 (1996).

    Google Scholar 

  10. J. L. Greaves and C. G. Wilson. Treatment of diseases of the eye with mucoadhesive delivery systems. Adv. Drug Del. Rev. 11:349–383 (1993).

    Google Scholar 

  11. N. M. Davies, S. J. Farr, J. Hadgraft, and I. W. Kellaway. Evaluation of mucoadhesive polymers in ocular drug delivery. II. Polymer-coated vesicles. Pharm. Res. 9:1137–1144 (1992).

    Google Scholar 

  12. H. Struszczyk and O. Kivekas. Some applications of micrcrystalline chitosan. In G. Skjak-Braek, T. Anthonsen and P. Sandford (eds.), Chitin and Chitosan: Sources, Chemistry, Biochemistry, Physical Properties and Aplications, Elsevier Applied Science, London, 1989, pp. 777–781.

    Google Scholar 

  13. J. Knapczyk, L. Krowczynski, J. Krzck, M. Brzeski, E. Schenk, and H. Struszcyk. Requirements of chitosan for pharmaceutical and biomedical applications. In G. Skjak-Braek, T. Anthonsen, and P. Sandford (eds.), Chitin and Chitosan: Sources, Chemistry, Biochemistry, Physical Properties and Aplications, Elsevier Applied Science, London, 1989, pp. 665–670.

    Google Scholar 

  14. S. Hirano, H. Seino, I. Akiyama, and I. Nonaka. Chitosan: a biocompatible material for oral and intravenous administration. In C. G. Gebelein and R. L. Dunn (eds.), Progress in Biomedical Polymers, Plenum Press, New York, 1990, pp. 283–289.

    Google Scholar 

  15. C. M. Lehr, J. A. Bowstra, E. H. Schacht, and H. E Juginger. In vitro evaluation of mucoahesive properties of chitosan and some others natural polymers. Int. J. Pharm. 78:43–48 (1992).

    Google Scholar 

  16. P. Calvo, J. L. Vila-Jato, and M. J. Alonso. Evaluation of cationic polymer-coated nanocapsules as ocular drug carriers. Int. J. Pharm. 153:41–50 (1997).

    Google Scholar 

  17. I. Henricksen, K. L. Green, J. D. Smart, and G. Smistab. J. Karlsen. Chitosan-coated liposomes for topical ocular drug administration. Int. J. Pharm. 145:231–240 (1996).

    Google Scholar 

  18. I. Genta, B. Conti, P. Perugini, F. Pavanetto, A. Spadaro, and G. Puglisi. Bioadhesive microspheres for ophthalmic administration of acyclovir. J. Pharm. Pharmacol. 49:737–742 (1997).

    Google Scholar 

  19. O. Felt, P. Furrer, J. M. Mayer, B. Plazzonet, P. Bun, and R. Gurny. Topical use of chitosan in ophthalmology: tolerance assessment and evaluation of precorneal retention. Int. J. Pharm. 180:185–193 (1999).

    Google Scholar 

  20. P. Calvo, C. Remuñán-López, J. L. Vila-Jato, and M. J. Alonso. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J. Appl. Polym. Sci. 63:125–132 (1997).

    Google Scholar 

  21. T. E. Anderson. Techniques for the preservation of three-dimensional structure in preparing specimens for the electron microscope. Ann. N. Y. Acad. Sci. 13:130–133 (1951).

    Google Scholar 

  22. M. Tobío, A. Sanchez, A. Vita, I. Soriano, C. Evora, J. L. Vila-Jato, and M. J. Alonso. The role of PEG on the stability in digestive fluids and in vivo fate of PEG-PLA nanoparticles following oral administration. Colloids and Surfaces B: Biointerfaces 18:315–323 (2000).

    Google Scholar 

  23. P. Calvo. J. L. Vila-Jato and, M. J. Alonso. Effect of lysozyme on the stability of polyester nanocapsules and nanoparticles: stabilization approaches. Biomaterials 118:1305–1310 (1997).

    Google Scholar 

  24. R. J. Nordtveit, K. M. Varum, and O. Smidssrod. Degradation of fully water-soluble, partially N-acetylated chitosans with lysozyme. Carbohydrate Polymers 24:253–260 (1994).

    Google Scholar 

  25. H. Sashiwa, H. Saimoto, and Y. Shigemasa. Lysozyme susceptibility of partially deacetylated chitin, lnt. J. Biol. Macromol. 12:295–296 (1990).

    Google Scholar 

  26. A. Vila, A. Sánchez, M. Tobío, P. Calvo, and M. J. Alonso. Design of biodegradable particles for protein delivery. J. Controlled Release 78:15–24 (2002).

    Google Scholar 

  27. E. E. Hassan and J. M. Gallo. A simple rheological method for the in vitro assessment of mucin-polymer bioadhesive bond strenght. Pharm. Res. 7:491–495 (1990).

    Google Scholar 

  28. R. W. Wood, V. H. Li, R. Kreuter, and J. R. Robinson. Ocular disposition of poly-hexyl2-cyano-[3-l4Cacrylate nanoparticles in the albino rabbit. Int. J. Pharm. 23:175–183 (1985).

    Google Scholar 

  29. P. Artursson, T. Lindmark, S. S. Davis, and L. Illum. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm. Res. 11:1358–1361 (1994).

    Google Scholar 

  30. N. G. M. Schipper, S. Olsson, J. Hoogstraate, A. de Boer, and K. M. Varum. Chitosans as absorption enhancers for poorly absorbable drugs 2: mechanism of absorption enhancement. Pharm. Res. 14:923–929 (1997).

    Google Scholar 

  31. C. Baudouin, F. Brignole, P. J. Pisella, F. Becquet, and P. J. Philip. Immunophenotyping of human dendriform cells from the conjunctival epithelium. Curr. Eye Res. 16:475–481 (1997).

    Google Scholar 

  32. V. H. L. Lee. Corneal and conjunctival primary culture models for drug delivery and disposition, American Association of Pharmaceutical Scientists PharmSci Suppl. 2(4): abstracts (2000).

  33. A. Enriquez de Salamanca, Y. Diebold, S. Castillejo, M. Jarrin, A. Vila, and M. J. Alonso. Evaluation of in vitro toxicity of chitosan nanoparticles and their transport across conjunctival epithelial cells. Proceedings of the 4th International Symposium on Ocular Pharmacology and Pharmaceutics, Sevilla, Spain (2002).

  34. B. A. Nichols, M. L. Chiappino, and C. R. Dawson. Demonstration of the mucus layer of the tear film by electron microscopy. Invest. Ophthalmol. Vis. Sci. 24:464–473 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria José Alonso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Campos, A.M., Diebold, Y., Carvalho, E.L.S. et al. Chitosan Nanoparticles as New Ocular Drug Delivery Systems: in Vitro Stability, in Vivo Fate, and Cellular Toxicity. Pharm Res 21, 803–810 (2004). https://doi.org/10.1023/B:PHAM.0000026432.75781.cb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000026432.75781.cb

Navigation