Skip to main content
Log in

In Vitro/in Vivo Correlation for 14C-Methylated Lysozyme Release from Poly(Ether-Ester) Microspheres

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The purpose of this study was to obtain an in vitro/in vivo correlation for the sustained release of a protein from poly(ethylene glycol) terephthalate (PEGT) / poly(butylene terephthalate) (PBT) microspheres.

Methods. Radiolabeled lysozyme was encapsulated in PEGT/PBT microspheres via a water-in-oil-in-water emulsion. Three microsphere formulations varying in copolymer composition were administered subcutaneously to rats. The blood plasma was analyzed for radioactivity content representing released lysozyme at various time points post-dose. The in vitro release was studied in phosphate-buffered saline.

Results. The encapsulation efficiency, calculated from the radioactivity in the outer water phase of the emulsion, varied from 60-87%. Depending on the PEG segment length and wt% PEGT, the lysozyme was released completely in vitro within 14 to 28 days without initial burst. 14C-methylated lysozyme could be detected in the plasma over the same time courses. The in vitro/in vivo correlation coefficients obtained from point-to-point analysis were greater than 0.96 for all microsphere formulations. In addition, less then 10% of administered radioactivity remained at dose site at 28 days for the microsphere formulations, indicating no notable retention of the protein at the injection site.

Conclusion. The in vitro release in phosphate-buffered saline and the in vivo release in rats showed an excellent congruence independent of the release rate of 14C-methylated lysozyme from PEGT/PBT microspheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. P. Schwendeman, H. R. Costantino, R. K. Gupta, and R. Langer. Peptide, protein, and vaccine delivery from implantable polymeric systems: progress and challenges. In K. Park (ed.), Controlled Drug Delivery, Challenges and Strategieys. American Chemical Society, Washington, DC, 1996 pp. 229-267.

    Google Scholar 

  2. P. Couvreur and F. Puisieux. Nano-and microparticles for the delivery of polypeptides and proteins. Adv. Drug Del. Rev. 10:141-162 (1993).

    Google Scholar 

  3. W. Lu and T. G. Park. Protein release from poly(lactic-co-glycolic acid) microspheres: protein stability problems. J. Pharm. Sci. Technol. 49:13-19 (1995).

    Google Scholar 

  4. G. Jiang, B. H. Woo, F. Kang, J. Singh, and P. P. DeLuca. Assessment of protein release kinetics, stability and protein polymer interaction of lysozyme encapsulated poly(D,L-lactide-co-glycolide) microspheres. J. Control. Rel. 79:137-145 (2002).

    Google Scholar 

  5. A. Aubert-Pouëssel, D. C. Bibby, M. C. Vernier-Julienne, F. Hindré, and J. P. Benoît. A novel in vitro delivery system for assessing the biological integrity of protein upon release from PLGA microspheres. Pharm. Res. 19:1046-1050 (2002).

    Google Scholar 

  6. T. Morita, Y. Sakamura, Y. Horikiri, T. Suzuki, and H. Yoshino. Evaluation of in vivo release characteristics of protein-loaded biodegradable microspheres in rats and severe combined immunodeficiency disease mice. J. Control. Rel. 73:213-221 (2001).

    Google Scholar 

  7. G. Jiang, W. Qiu, and P. P. DeLuca. Preparation and in vitro/in vivo evaluation of insulin-loaded poly(acryloyl-hydroxyethyl starch)-PLGA composite microspheres. Pharm. Res. 20:452-459 (2003).

    Google Scholar 

  8. P. Johansen, G. Corradin, H. P. Merkle, and B. Gander. Release of tetanus toxoid from adjuvants and PLGA microspheres: How experimental set-up and surface adsorption fool the pattern. J. Control. Rel. 56:209-217 (1998).

    Google Scholar 

  9. J. M. Bezemer, R. Radersma, D. W. Grijpma, P. J. Dijkstra, J. Feijen, and C. A. van Blitterswijk. Zero-order release of lysozyme from poly(ethylene glycol)/poly(buthylene terephthalate) matrices. J. Control. Rel. 64:179-192 (2000).

    Google Scholar 

  10. G. J. Beumer, C. A. van Blitterswijk, and M. Ponec. Biocompatibility of degradable matrix induced as a skin substitute: an in vivo evaluation. J. Biomed. Mater. Res. 28:545-552 (1994).

    Google Scholar 

  11. R. van Dijkhuizen-Radersma, S. C. Hesseling, P. E. Kaim, K. de Groot K, and J. M. Bezemer. Biocompatibility and degradation of poly(ether-ester) microspheres: in-vitro and in-vivo evaluation. Biomaterials 23:4719-4729 (2002).

    Google Scholar 

  12. J. M. Bezemer, R. Radersma, D. W. Grijpma, P. J. Dijkstra, and C. A. van Blitterswijk, J. Feijen. Microspheres for protein delivery prepared from amphiphilic multiblock copolymers. 2. Modulation of release rate. J. Control. Rel. 67:249-260 (2000).

    Google Scholar 

  13. M. van de Weert, R. van Dijkhuizen-Radersma, J. M. Bezemer, W. E. Hennink, and D. J. A Crommelin. Reversible aggregation of lysozyme in a biodegradable amphiphilic multiblock copolymer. Eur. J. Pharm. Biopharm. 54:89-93 (2002).

    Google Scholar 

  14. Y. Machida, H. Onishi, A. Kurita, H. Hata, A. Morikawa, and Y. Machida. Pharmacokinetics of prolonged-release of CPT-11-loaded microspheres in rats. J. Control. Rel. 66:159-175 (2000).

    Google Scholar 

  15. I. Soriano, C. Evora, and M. Llabrés. Preparation and evaluation of insulin-loaded poly(DL-lactide) microspheres using an experimental design. Int. J. Pharm. 142:135-142 (1996).

    Google Scholar 

  16. J. L. Cleland, O. L. Johnson, S. Putney, and A. J. S. Jones. Recombinant human growth hormone poly(lactic-co-glycolic acid) microsphere formulation development. Adv. Drug Del. Rev. 28:71-84 (1997).

    Google Scholar 

  17. T. K. Kim and D. J. Burgess. Pharmacokinetic characterization of 14C-vascular endothelial growth factor controlled release microspheres using a rat model. J. Pharm. Pharmacol. 54:897-905 (2002).

    Google Scholar 

  18. C. J. H. Porter, G. A. Edwards, and S. A. Charman. Lymphatic transport of proteins after s.c. injection: implications of animal model selection. Adv. Drug. Deliv. Rev. 50:157-171 (2001).

    Google Scholar 

  19. A. Supersaxo, W. R. Hein, and H. Steffen. Effect of molecular weight on the lymphatic absorption of water-soluble compounds following subcutaneous administration. Pharm. Res. 7:167-169 (1990).

    Google Scholar 

  20. C. M. Negrín, A. Delgado, M. Llabrés, and C. Évora. In vivo-in vitro study of biodegradable methadone delivery systems. Biomaterials 22:563-570 (2001).

    Google Scholar 

  21. M. Tracy, K. L. Ward, L. Firouzabadian, Y. Wang, N. Dong, R. Qian, and Y. Zhang. Factors affecting the degradation rate of poly(lactide-co-glycolide) microspheres in vivo and in-vitro. Biomaterials 20:1057-1062 (1999).

    Google Scholar 

  22. G. Spenlehauer, M. Vert, J. P. Benoit, and A. Boddaert. In vitro and in vivo degradation of poly(D,L lactide/glycolide) type microspheres made by solvent evaporation method. Biomaterials 10:557-563 (1989).

    Google Scholar 

  23. T. G. Park, W. Lu, and G. Crotts. Importance of in vitro experimental conditions on protein release kinetics, stability and polymer degradation in protein encapsulated poly(D,L-lactic acid-co-glycolic acid)microspheres. J. Control. Rel. 33:211-222 (1995).

    Google Scholar 

  24. R. V. Diaz, M. Llabrés, and C. Évora. One-month sustained release microspheres of 125I-bovine calcitonin: in vitro-in vivo studies. J. Control. Rel. 59:55-62 (1999).

    Google Scholar 

  25. A. J. Kuijpers, P. B. van Wachem, M. J. A. van Luyn, G. H. M. Engbers, J. Krijgsveld, S. A. J. Zaat, J. Dankert, and J. Feijen. In vivo and in vitro release of lysozyme from cross-linked gelatin hydrogels: a model system for the delivery of antibacterial proteins from prosthetic heart valves. J. Control. Rel. 67:323-336 (2000).

    Google Scholar 

  26. R. K. Gupta, A. C. Chang, P. Griffin, R. Rivera, and Y. Y. Guo. Determination of protein loading in biodegradable polymer microspheres containing tetanus toxoid. Vaccine 15:672-678 (1997).

    Google Scholar 

  27. J. Zuidema, F. Kadir, H. A. C. Titulaer, and C. Oussoren. Release and absorption rates of intramuscularly and subcutaneously injected pharmaceuticals (II). Int. J. Pharm. 105:189-207 (1994).

    Google Scholar 

  28. S. Y. Yen, K. C. Sung, J. J. Wang, and O. Y. P Hu. Controlled release of nalbuphine propionate from biodegradable microspheres: in vitro and in vivo studies. Int. J. Pharm. 220:91-99 (2001).

    Google Scholar 

  29. J. L. Cleland, A. Daugherty, and R. Mrsny. Emerging protein delivery methods. Curr. Opin. Biotechnol. 12:212-219 (2001).

    Google Scholar 

  30. K. Yamaguchi and J. M. Anderson. Biocompatibility studies of naltrexone sustained release formulations. J. Control. Rel. 19:299-314 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. van Dijkhuizen-Radersma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Dijkhuizen-Radersma, R., Wright, S.J., Taylor, L.M. et al. In Vitro/in Vivo Correlation for 14C-Methylated Lysozyme Release from Poly(Ether-Ester) Microspheres. Pharm Res 21, 484–491 (2004). https://doi.org/10.1023/B:PHAM.0000019303.12086.d1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000019303.12086.d1

Navigation