Skip to main content
Log in

Polymeric Drug Nanoparticles Prepared by an Aerosol Flow Reactor Method

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Our purpose was to study the possibility of using a novel method, namely, aerosol flow reactor method, for the preparation of drug-containing nanoparticles with varying amounts of drug and polymer. The physical properties of the prepared nanoparticles were analyzed.

Methods. The nanoparticle size distributions were measured using differential mobility analyzer. The structure of the prepared nanoparticles was assessed by x-ray diffraction, differential scanning calorimetry, and electron microscopy. Drug release from the nanoparticles was analyzed.

Results. The spherical particles produced showed a unimodal and lognormal size distribution, and the geometric number mean size of the nanoparticles could be varied between 90 and 200 nm. When the amount of drug in the polymeric matrix was small, the nanoparticles had a homogeneous, amorphous structure. Drug crystals were formed when the amount of drug was increased over the solubility limit of the drug into the polymer. The amounts of drug and polymer controlled the drug release from the nanoparticles.

Conclusions. The aerosol flow reactor method was found to be able to produce homogeneous amorphous matrix-type nanoparticles that can directly be collected as dry powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. H. Müller and K. Peters. Nanosuspensions for the formulation of poorly soluble drugs I. Preparation by a size-reduction technique. Int. J. Pharm. 160:229-237 (1998).

    Google Scholar 

  2. E. Merisko-Liversidge, P. Sarpotdar, J. Bruno, S. Hajj, L. Wei, N. Peltier, J. Rake, J. M. Shaw, S. Pugh, L. Polin, J. Jones, T. Corbett, E. Cooper, and G. G. Liversidge. Formulation and antitumor activity evaluation of nanocrystalline suspensions of poorly soluble anticancer drugs. Pharm. Res. 13:272-278 (1996).

    Google Scholar 

  3. G. G. Liversidge and P. Conzentino. Drug particle size reduction for decreasing gastric irritancy and enhancing absorption of naproxen in rates. Int. J. Pharm. 125:309-313 (1995).

    Google Scholar 

  4. J-C. Leroux, E. Allémann, E. Doelker, and R. Gurny. New approach for the preparation of nanoparticles by an emulsification-diffusion method. Eur. J. Pharm. Biopharm. 41:14-18 (1995).

    Google Scholar 

  5. R. Bodmeier and H. Chen. Indomethacin polymeric nanosuspensions prepared by microfluidization. J Controlled Release 12:223-233 (1990).

    Google Scholar 

  6. R. H. Müller, C. Jacobs, and O. Kayser. Nanosuspensions as particulate drug formulations in therapy Rationale for development and what can we expect for the future. Adv. Drug Deliv. Rev. 47:3-19 (2001).

    Google Scholar 

  7. N. Kondo, T. Iwao, H. Masuda, K. Yamanouchi, Y. Ishihara, N. Yamada, T. Haga, Y. Ogawa, and K. Yokoyama. Improved oral absorption of a poorly water-soluble drug, HO-221, by wet-bead milling producing particles in a submicron region. Chem. Pharm. Bull. 41:737-740 (1993).

    Google Scholar 

  8. J-O. Waltersson and P. Lundgren. The effect of mechanical comminution on drug stability. Acta Pharm. Suec. 22:291-300 (1985).

    Google Scholar 

  9. R. Arshady. Preparation of biodegradable microspheres and microcapsules: 2. Polylactides and related polyesters. J Controlled Release 17:1-22 (1991).

    Google Scholar 

  10. R. Bodmeier, H. Chen, P. Tyle, and P. Jarosz. Spontaneous formation of drug-containing acrylic nanoparticles. J Microencaps. 8:161-170 (1991).

    Google Scholar 

  11. C. Schmidt and R. Bodmeier. Incorporation of polymeric nanoparticles into solid dosage forms. J Controlled Release 57:115-125 (1999).

    Google Scholar 

  12. L. S. Tu, F. Dehghani, and N. R. Forster. Micronization and microencapsulation of pharmaceuticals using a carbon dioxide antisolvent. Powder Tech. 126:134-149 (2002).

    Google Scholar 

  13. E. Reverchon and G. Della Porta. Production of antibiotic micro-and nano-particles by supercritical antisolvent precipitation. Powder Tech. 106:23-29 (1999).

    Google Scholar 

  14. R. Bodmeier, H. Wang, D. J. Dixon, S. Mawson, and K. P. Johnston. Polymeric microspheres prepared by spraying into compressed carbon dioxide. Pharm. Res. 12:1211-1217 (1995).

    Google Scholar 

  15. E. Reverchon, G. Della Porta, and M. G. Falivene. Process parameters and morphology in amoxicillin micro and submicro particles generation by supercritical antisolvent precipitation. J Supercrit Fluids. 17:239-248 (2000).

    Google Scholar 

  16. G. F. Palmieri, G. Bonacucina, P. Di Martino, and S. Martelli. Gastro-resistant microspheres containing ketoprofen. J Microencaps. 19:111-119 (2002).

    Google Scholar 

  17. J-H. Kim, T. E. Paxton, and D. L. Tomasko. Microencapsulation of naproxen using rapid expansion of supercritical solutions. Biotech Prog. 12:650-661 (1996).

    Google Scholar 

  18. F. De Jaeghere, E. Allémann, E. Doelker, and R. Gurny. pH-dependent dissolving nano-and microparticles for improved peroral delivery of a highly lipophilic compound in dogs. AAPS Pharmsci. 3:Article 8 (2001). http://aapspharmsci.org/ps0301/ps030108/ps030108.pdf, pages 1-8.

    Google Scholar 

  19. A. J. Shukla. Polymethacrylates. In: A. Wade and P. J. Weller (eds.), Handbook of Pharmaceutical Excipients American Pharmaceutical Association, Pharmaceutical Press, Washington, DC, 1994.

    Google Scholar 

  20. R. E. Hillamo and E. I. Kauppinen. On the performance of the Berner low pressure impactor. Aeros. Sci. Tech. 14:33-47 (1991).

    Google Scholar 

  21. K. Hartke (ed.). Kommentar zum Europäischen Arzneibuch. Wissenschafliche Verlagsgesellschaft mbH, Govi-Verlag, Stuttgart, Eschborn, Germany, 1993–2000.

    Google Scholar 

  22. US Pharmacopeia XXV,<724> Drug Release. United States Pharmacopeial Convention, Rockville, MD, 2001.

  23. TSI Incorporated TSI Model 3075/3076 Constant Output Atomizer Instruction Manual. TSI Incorporated, St. Paul, MN, 2000.

  24. I. Brigger, C. Dubernet, and P. Couvreur. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 54:631-651 (2002).

    Google Scholar 

  25. A. H. El-Kamel, M. S. Sokar, S. S. Al Gamal, and V. F. Naggar. Preparation and evaluation of ketoprofen floating oral delivery system. Int. J. Pharm. 220:13-21 (2001).

    Google Scholar 

  26. C. Wu and J. W. McGinity. Non-traditional plasticization of polymeric films. Int. J. Pharm. 177:15-27 (1999).

    Google Scholar 

  27. C. Wu and J. W. McGinity. Influence of Ibuprofen as a Solid-State Plasticizer in Eudragit RS 30 D on the Physicochemical Properties of Coated Beads, AAPS PharmSciTech. 2:Article 24 (2001). http:aapspharmscitech.org/pt0204/pt020424/pt020424.pdf, pages 1-9.

    Google Scholar 

  28. M. R. Jenquin, S. M. Liebowitz, R. E. Sarabia, and J. W. McGinity. Physical and chemical factors influencing the release of drugs from acrylic resin films. J. Pharm. Sci. 79:811-816 (1990).

    Google Scholar 

  29. R. Pignatello, M. Ferro, and G. Puglisi. Preparation of solid dispersions of nonsteroidal anti-inflammatory drugs with acrylic polymers and studies on mechanisms of drug-polymer interactions. AAPS PharmSciTech 3:Article 10 (2002). http://www.aapspharmscitech.org/pt0302/pt030210/pt030210.pdf, pages 1-11.

    Google Scholar 

  30. C. Dubernet. Thermoanalysis of microspheres. Thermochim Acta 248:259-269 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esko I. Kauppinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eerikäinen, H., Kauppinen, E.I. & Kansikas, J. Polymeric Drug Nanoparticles Prepared by an Aerosol Flow Reactor Method. Pharm Res 21, 136–143 (2004). https://doi.org/10.1023/B:PHAM.0000012161.58738.25

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000012161.58738.25

Navigation