Skip to main content
Log in

Novel Polysaccharide-Decorated Poly(Isobutyl Cyanoacrylate) Nanoparticles

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The aim of this work was to synthesize new surface-modified nanoparticles using a radical emulsion polymerization of an alkyl cyanoacrylate.

Methods. Isobutyl cyanoacrylate was polymerized in nitric acid 0.2 M containing a polysaccharide (0.1375 g) and cerium (8 × 10∖-2 M). After 1 h, the pH was adjusted to 7.0, and the nanoparticles were purified by dialysis. Nanoparticle characterization included scanning electron microscopy, quasi-elastic light scattering, zeta potential determination, measurements of the complement activation induced by different polysaccharide-coated nanoparticles and of the antithrombic activity of heparin.

Results. Dispersions of spherical particles were obtained using various polysaccharides. The particle diameter varied from 90 nm to several micrometers, and the zeta potential depended on the molecular weight and the nature and charge of the polysaccharide. Surface analysis performed by ESCA confirmed the presence of polysaccharides at the nanoparticle surface. The nanoparticles were very stable, and the biologic activity of the polysaccharide was preserved. Complement activation was influenced by the polysaccharide characteristics.

Conclusions. A new method based on radical emulsion polymerization of isobutyl cyanoacrylate initiated by polysaccharides and cerium was developed to prepare nanoparticles. It leads, in a single step, to nanoparticles with surface properties defined by the polysaccharide. This method is a new concept for the development of biomimetic drug carriers with multiple functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Illum, N. W. Thomas, and S. S. Davis. Effect of a selected suppression of the reticuloendothelial system on the distribution of model carrier particles. J. Pharm. Sci. 75:16-22 (1986).

    Google Scholar 

  2. R. Gref, Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchilin, and R. Langer. Biodegradable long-circulating polymeric nanospheres. Science 263:1600-1603 (1994).

    Google Scholar 

  3. M. Vittaz, D. Bazile, G. Spenlehauer, T. Verrecchia, M. Veillard, F. Puisieux, and D. Labarre. Effect of PEO surface density on long circulating PLA-PEO nanoparticles which are very low complement activators. Biomaterials 17:1575-1581 (1996).

    Google Scholar 

  4. C. Lourenco, M. Teixeira, S. Simoes, and R. Gaspar. Steric stabilization of nanoparticles: size and surface properties. Int. J. Pharm. 138:1-12 (1996).

    Google Scholar 

  5. M. T. Peracchia, C. Vauthier, C. Passirani, P. Couvreur, and D. Labarre. Complement consumption by poly(ethylene glycol) in different conformations chemically coupled to poly(isobutyl 2-cyanoacrylate) nanoparticles. Life Sci. 61:749-761 (1997).

    Google Scholar 

  6. M. T. Peracchia, C. Vauthier, D. Desmaële, A. Gulik, J. C. Dedieu, M. Demoy, J. D'Angelo, and P. Couvreur. Pegylated nanoparticles from a novel methoxypolyethylene glycol cyanoacrylate-hexadecyl cyanoacrylate amphiphilic copolymer. Pharm. Res. 15:550-556 (1998).

    Google Scholar 

  7. M. C. Woodle. Controlling liposome blood clearance by surface-grafted polymers. Adv. Drug Delivery Rev. 32:139-152 (1998).

    Google Scholar 

  8. D. F. Ranney. Biomimetic transport and rational drug delivery. Biochem. Pharmacol. 59:105-114 (2000).

    Google Scholar 

  9. S. Dumitriu. Polysaccharides as Biomaterials. In: S Dumitriu (ed.), Polymeric Biomaterials, 2nd ed., Marcel Dekker, New York, 2001, pp. 1-61.

    Google Scholar 

  10. C. Passirani, G. Barratt, J. P. Devissaguet, and D. Labarre. Long-circulating nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate). Pharm. Res. 15:1046-1050 (1998).

    Google Scholar 

  11. C. Chauvierre, P. Couvreur, D. Labarre, and C. Vauthier. Block-structure copolymer consisting of a saccharide segment bound to at least a biodegradable hydrophobic segment, and corresponding particles, Patent WO 0239979 (2002).

  12. H. W. Coover, D. W. Dreifus, and J. T. O'Connor. Cyanoacrylate adhesives. In I. Skeist (ed.), Handbook of Adhesives, 3rd ed., Van Nostrand Reinhold, New York, 1990, pp. 463-477.

    Google Scholar 

  13. E. Fattal, M. T. Peracchia, and P. Couvreur. Poly(alkylcyanoacrylates). In A. J. Dombs, J. Kost, D. M. Wisenman (eds.), Handbook of Biodegradable Polymers, Harwood Academic Publisher, Amsterdam, 1997, pp.183-202.

    Google Scholar 

  14. G. Beamson and D. Briggs. (eds.). High Resolution XPS of Organic Polymers. The Scienta ESCA300 Database, John Wiley, Chichester (1992).

    Google Scholar 

  15. C. B. Laurell. Quantitative estimation of proteins by electrophoresis in agarose gels containing antibodies. Anal. Biochem. 15:45-52 (1966).

    Google Scholar 

  16. C. Passirani, G. Barratt, J. P. Devissaguet, and D. Labarre. Interactions of nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate) with the complement system. Life Sci. 62:775-785 (1998).

    Google Scholar 

  17. V. C. F. Mosqueira, P. Legrand, A. Gulik, O. Bourdon, R. Gref, D. Labarre, and G. Barratt. Relationship between complement activation, cellular uptake and surface physicochemical aspects of novel PEG-modified nanocapsules. Biomaterials 22:2967-2979 (2001).

    Google Scholar 

  18. I. Casinos. Role of ceric ion in the heterogeneous graft polymerisation of olefins on cellulose. Polymer 33:1304-1315 (1992).

    Google Scholar 

  19. C. Chauvierre, D. Labarre, P. Couvreur, and C. Vauthier. Radical polymerization of alkylcyanoacrylates to produce polysaccharide-coated nanoparticles. Proceedings of the 4th World meeting ADRITELF/APGI/APV. Florence, Italy, 8–11 April 2002, pp. 665–666.

  20. P. Chowdhury and C. M. Pal. Graft copolymerisation of methyl acrylate onto polyvinyl alcohol using Ce(IV) initiator. Eur. Polym. J. 35:2207-2213 (1999).

    Google Scholar 

  21. S. J. Douglas, L. Illum, S. S. Davis, and J. Kreuter. Particle size and size distribution of poly(butyl-2-cyanoacrylate) nanoparticles. J. Colloid Interf. Sci. 101:149-158 (1984).

    Google Scholar 

  22. E. Urlaub, J. Popp, V. E. Roman, W. Kiefer, M. Lankers, and G. Rössling. Raman spectroscopic monitoring of the polymerisation of cyanoacrylate. Chem. Phys. Lett. 298:177-182 (1998).

    Google Scholar 

  23. N. Behan, C. Birkinshaw, and N. Clarke. Poly n-butyl cyanoacrylate nanoparticles: a mechanistic study of polymerisation and particle formation. Biomaterials 22:1335-1344 (2001).

    Google Scholar 

  24. G. Barratt. Characterization of colloidal drug carrier systems with zeta potential measurements. Pharm. Technol. Eur. January:25-32 (1999).

  25. E. Fattal, C. Vauthier, I. Aynié, Y. Nakada, G. Lambert, C. Malvy, and P. Couvreur. Biodegradable polyalkycyanoacrylate nanoparticles for the delivery of oligonucleotides. J. Controlled Rel 53:137-143 (1998).

    Google Scholar 

  26. R. L. Rowell. Characterization of polymer colloids. In F. Candau and R. H. Ottewill (eds.) An Introduction to Polymer Colloids, Kluwer Academy Publishers, Dordrecht, The Netherlands, 1990, pp. 187-208-

    Google Scholar 

  27. J. McKay and C. B. Laurell. The interaction of heparin with plasma proteins. Demonstration of different binding sites for antithrombin III complexes and antithrombin III. J. Lab. Clin. Med. 95:69-80 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Vauthier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chauvierre, C., Labarre, D., Couvreur, P. et al. Novel Polysaccharide-Decorated Poly(Isobutyl Cyanoacrylate) Nanoparticles. Pharm Res 20, 1786–1793 (2003). https://doi.org/10.1023/B:PHAM.0000003376.57954.2a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000003376.57954.2a

Navigation