Skip to main content
Log in

Effects of Lovastatin and Pravastatin on Amyloid Processing and Inflammatory Response in TgCRND8 Brain

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Previous studies suggest that treatment with statins reduce beta amyloid (Aβ) deposition in brains of mouse models of Alzheimer's disease (AD) and may reduce the prevalence of AD in humans. Since lipophilicity influences the biological efficacy of statins, we compared the effects of lovastatin, a lipophilic statin, to effects of the hydrophilic pravastatin on amyloid processing and inflammatory responses in brain. Three-month old TgCRND8 mice expressing mutant human amyloid precursor protein (mHuAPP) were treated daily with various doses of either statin. After 1month, levels of cerebral soluble and fibrillar Aβ peptides, soluble sAPPα, and inflammatory cytokines were measured. Both statins caused dose-dependent reductions in total Aβ peptides with parallel increases in total sAPPα. At all doses, slightly greater effects were observed with lovastatin than with pravastatin. In contrast, only lovastatin significantly increased levels of IL-1β and of TNFα in a dose-dependent manner. Lovastatin, but not pravastatin, decreased succinic dehydrogenase and increased lactate dehydrogenase activities in skeletal muscle and increased TUNEL staining in liver. Our data demonstrate that both statins shift the balance of APP processing from excessive β-toward the normal α-cleavage while reducing the total amyloid burden in TgCRND8 brain and that lovastatin, but not pravastatin, potentiates cerebral inflammation and is associated with liver and muscle histotoxicity in these animals. These data show that pravastatin can reduce amyloid burden without potentiating inflammatory responses in brain and, therefore, may have a wider dose-range of safety than have lipophilic statins in the treatment or prevention of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Alberts, A. W. 1988. Discovery, biochemistry and biology of lovastatin.Am. J. Cardiol. 62(15):10J-15J.

    Google Scholar 

  2. Williams, D. and Feely, J. 2002, Pharmacokinetic-pharmacodynamic drug interactions with HMG-CoA reductase inhibitors. Clin. Pharmacokinet. 41(5):343-370.

    Google Scholar 

  3. National Cholesterol Education Program (NCEP)Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP)Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 106(25):3143-3421.

  4. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20, 536 high-risk individuals:a randomised placebo-controlled trial. 2002. Lancet 360(9326):7-22. Summary for patients in:Curr Cardiol Rep. 2002 Nov;4(6):486-487.

    Google Scholar 

  5. Chauhan, N. B. 2003. Membrane dynamics, cholesterol homeostasis, and Alzheimer 's disease. J. Lipid Res. 44(11):2019-2029.

    Google Scholar 

  6. Refolo, L. M., Malester, B., LaFrancois, J., Bryant-Thomas, T., Wang, R., Tint, G. S., Sambamurti, K., Du., K., and Pappolla, M. A. 2000. Hypercholesterolemia accelerates the Alzheimer 's amyloid pathology in a transgenic mouse model. Neurobiol. Dis. 7(4):321-331. Erratum in:Neurobiol. Dis. 7(6 Pt B):690.

    Google Scholar 

  7. Poirier, J. 2000. Apolipoprotein E and Alzheimer's disease. A role in amyloid catabolism. Ann. N. Y. Acad. Sci. 924:81-90.

    Google Scholar 

  8. Holtzman, D. M., Fagan, A., and M., Mackey, B., Tenkova, T., Sartorius, L., Paul, S. M., Bales, K., Ashe, K. H., Irizarry, M. C., and Hyman, B. T. 2000. Apolipoprotein E facilitates neuritic and cerebrovascular plaque formation in an Alzheimer 's disease model. Ann. Neurol. 47(6):739-747.

    Google Scholar 

  9. Sawamura, N., Gong, J. S., Garver, W. S., Heidenreich, R. A., Ninomiya, H., Ohno K., Yanagisawa, K., and Michikawa, M. 2001. Site-specific phosphorylation of tau accompanied by activation of mitogen-activated protein kinase (MAPK)in brains of Niemann-Pick type C mice. J. Biol. Chem. 276(13):10314-10319.

    Google Scholar 

  10. Runz, H., Rietdorf, J., Tomic, I., de Bernard, M., Beyreuther, K., Pepperkok, R., and Hartmann, T. 2002. Inhibition of intracellular cholesterol transport alters presenilin localization and amyloid precursor protein processing in neuronal cells. J. Neurosci. 22(5):1679-1689.

    Google Scholar 

  11. Wolozin, B., Kellman, W., Ruosseau, P., Celesia, G. G., and Siegel, G. 2000. Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch. Neurol. 57(10):1439-1443.

    Google Scholar 

  12. Jick, H., Zornberg, G. L., Jick, S. S., Seshadri, S., and Drachman, D. A. 2000. Statins and the risk of dementia. Lancet 356(9242):1627-1631. Erratum in:Lancet 357(9255):562. 1909 Differential Effects of Lovastatin and Pravastatin in TgCRND8.

    Google Scholar 

  13. Hajjar, I., Schumpert, J., Hirth, V., Wieland, D., and Eleazer, G. P. 2002. The impact of the use of statins on the prevalence of dementia and the progression of cognitive impairment. J. Gerontol. A. Biol. Sci. Med. Sci. 57(7):M414-M418.

    Google Scholar 

  14. Rockwood, K., Kirkland, S., Hogan, D. B., MacKnight, C., Merry, H., Verreault, R., Wolfson, C., and McDowell, I. 2002. Use of lipid-lowering agents indication bias, and the risk of dementia in community-dwelling elderly people. Arch. Neurol. 59(2):223-227.

    Google Scholar 

  15. Refolo, L. M., Pappolla, M. A., LaFrancois, J., Malester, B, Schmidt, S. D., Thomas-Bryant, T., Tint, G. S, Wang, R., Mercken, M., Petanceska, S. S., and Du., K. E. 2001. A cholesterol-lowering drug reduces beta-amyloid pathology in a transgenic mouse model of Alzheimer 's disease. Neurobiol. Dis. 8(5):890-899.

    Google Scholar 

  16. Petanceska, S. S., DeRosa, S., Olm, V., Diaz, N., Sharma, A., Thomas-Bryant, T., Du., K., Pappolla, M., and Refolo, L. M. 2002. Statin therapy for Alzheimer's disease:will it work? J. Mol. Neurosci. 19(1–2):155-161.

    Google Scholar 

  17. Fassbender, K., Simons, M., Bergmann, C., Stroick, M., Lutjohann, D., Keller, P., Runz, H., Kuhl, S., Bertsch, T., von Bergmann, K., Hennerici, M., Beyreuther, K., and Hartmann, T. 2001. Simvastatin strongly reduces levels of Alzheimer 's disease beta-amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo Proc. Natl. Acad. Sci. U. S. A. 98(10):5856-5861.

    Google Scholar 

  18. Liao, J. K. 2002. Beyond lipid lowering:The role of statins in vascular protection. Int. J. Cardiol. 86(1):5-18.

    Google Scholar 

  19. Vaughan, C. J. 2003. Prevention of stroke and dementia with statins:Effects beyond lipid lowering. Am. J. Cardiol. 91(4A):23B-29B.

    Google Scholar 

  20. Cucchiara, B., and Kasner, S. E. 2001. Use of statins in CNS disorders. J. Neurol. Sci. 187(1–2):81-89.

    Google Scholar 

  21. Stuve, O., Youssef, S., Steinman, L., and Zamvil, S. S. 2003. Statins as potential therapeutic agents in neuroinflammatory disorders. Curr. Opin. Neurol. 16(3):393-401.

    Google Scholar 

  22. Tringali, G., Vairano, M., Dello, Russo, C., Preziosi, P., and Navarra, P. 2004. Lovastatin and mevastatin reduce basal and cytokine-stimulated production of prostaglandins from rat microglial cells in vitro:evidence for a mechanism unrelated to the inhibition of hydroxy-methyl-glutaryl CoA reductase. Neurosci. Lett. 354(2):107-110.

    Google Scholar 

  23. Fukami, M., Maeda, N., Fukushige, J., Kogure, Y., Shimada, Y., Ogawa, T., and Tsujita, Y. 1993. Effects of HMG-CoA reductase inhibitors on skeletal muscles of rabbits. Res. Exp. Med. (Berl). 193(5):263-273.

    Google Scholar 

  24. Reijneveld, J. C., Koot, R. W., Bredman, J. J., Joles, J. A., Bar, P. R. 1996. Differential effects of 3-hydroxy-3-methyl-glutarylcoenzyme A reductase inhibitors on the development of myopathy in young rats. Pediatr. Res. 39(6):1028-1035.

    Google Scholar 

  25. Nakahara, K., Kuriyama, M., Sonoda, Y., Yoshidome, H., Nakagawa, H., Fujiyama, J., Higuchi, I., and Osame, M. 1998. Myopathy induced by HMG-CoA reductase inhibitors in rabbits:A pathological, electrophysioiogical, and biochemical study. Toxicol. Appl. Pharmacol. 152(1):99-106.

    Google Scholar 

  26. Gerson, R. J., MacDonald, J. S., Alberts, A. W., Kornbrust, D. J., Majka, J. A., Stubbs, R. J., and Bokelman, D. L. 1989. Animal safety and toxicology of simvastatin and related hydroxy-methylglutaryl-coenzyme A reductase inhibitors. Am. J. Med. 87(4A):28S-38S.

    Google Scholar 

  27. MacDonald, J. S., Gerson, R. J., Kornbrust, D. J., Kloss, M. W., Prahalada, S., Berry, P. H., Alberts, A. W., and Bokelman, D. L. 1988. Preclinical evaluation of lovastatin. Am. J. Cardiol. 62(15):16J-27J.

    Google Scholar 

  28. Davidson, M. H. 2001. Safety proles for the HMG-CoA reductase inhibitors:treatment and trust. Drugs 61(2):197-206.

    Google Scholar 

  29. Chishti, M. A., Yang, D. S., Janus, C., Phinney, A. L., Horne, P., Pearson, J., Strome, R., Zuker, N., Loukides, J., French, J., Turner, S., Lozza, G., Grilli, M., Kunicki, S., Morissette, C., Paquette, J., Gervais, F., Bergeron, C., Fraser, P. E., Carlson, G. A., George-Hyslop, P. S., and Westaway, D. 2001. Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J. Biol. Chem. 276(24):21562-21570.

    Google Scholar 

  30. Tobert, J. A. 1988. Eficacy and long-term adverse effect pattern of lovastatin. Am. J. Cardiol. 62(15):28J-34J.

    Google Scholar 

  31. Chauhan, N. B. and Siegel, G. J. 2002. Reversal of amyloid beta toxicity in Alzheimer's disease model Tg2576 by intraventricular antiamyloid beta antibody. J. Neurosci. Res. 69(1):10-23.

    Google Scholar 

  32. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.

    Google Scholar 

  33. Chauhan, N. B. and Siegel, G. J. 2003. Effect of PPF and ALCAR on the induction of NGF-and p75-mRNA and on APR processing in Tg2576 brain.Neurochem. Int. 43(3):225-233.

    Google Scholar 

  34. Chauhan, N. B., Lichtor, T., and Siegel, G. J. 2003. Aging potentiates Abeta-induced depletion of SNAP-25 in mouse hippocampus. Brain Res. 982(2):219-227.

    Google Scholar 

  35. Chauhan, N. B. and Siegel, G. J. 2003. Intracerebroventricular passive immunization with anti-Abeta antibody in Tg2576. J. Neurosci. Res. 74(1):142-147.

    Google Scholar 

  36. Simons, M., Keller, P., Dichgans, J. and Schulz, J. B. 2001. Cholesterol and Alzheimer 's disease:is there a link? Neurology 57(6):1089-1093.

    Google Scholar 

  37. Selkoe, D. J. and Lansbury, P. J., Jr. 1999. Biochemistry of Alzheimer 's and Prion Diseases. pp. 949-968. in Siegei, G. J., Agrano. B. W., Albers, R. W., Fisher, S. K. and Uhler, M. D. (eds. ), Basic Neurochemistry. Lippincot Raven, New York.

    Google Scholar 

  38. Mori, C., Spooner, E., and T., Wisniewski, K. E., Wisniewski, T. M., Yamaguch, H., Saido, T. C., Tolan, D. R., Selkoe, D. J., and Lemere, C. A. 2002. Intraneuronal Abeta42 accumulation in Down syndrome brain. Amyloid 9(2):88-102.

    Google Scholar 

  39. Sparks, D. L., Martin, T. A., Gross, D. R., Hunsaker, J. C. 2000. 3rd Link between heart disease, cholesterol, and Alzheimer 's disease:a review. Microsc. Res. Tech. 50(4):287-90.

    Google Scholar 

  40. Fukami, S., Watanabe, K., Iwata, N., Haraoka, J., Lu, B., Gerard, N. P., Gerard, C., Fraser, P., Westaway, D., St George-Hyslop, P., and Saido, T. C. 2002. Abeta-degrading endopeptidase, neprilysin, in mouse brain:synaptic and axonal localization inversely correlating with Abeta pathology. Neurosci. Res. 43(1):39-56.

    Google Scholar 

  41. Yasojima, K., McGeer, E. G., McGeer, P. L. 2001. Relationship between beta amyloid peptide generating molecules and neprilysin in Alzheimer disease and normal brain. Brain Res. 919(1):115-121.

    Google Scholar 

  42. Mohajeri, M. H., Wollmer, M. A., and Nitsch, R. M. 2002. Abeta 42-induced increase in neprilysin is associated with prevention of amyloid plaque formation in vivo. J. Biol. Chem. 277(38):35460-35465.

    Google Scholar 

  43. Simons, M., Keller, P., De Strooper, B., Beyreuther, K., Dotti, C. G., and Simons, K. 1998. Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc. Natl. Acad. Sci. U. S. A. 95(11 ):6460-6464.

    Google Scholar 

  44. Frears, E. R., Stephens, D. J., Walters, C. E., Davies, H., and Austen, B. M. 1999. The role of cholesterol in the biosynthesis of beta-amyloid. Neuroreport 10(8):1699-1705.

    Google Scholar 

  45. Karten, B., Vance, D. E., Campenot, R. B., and Vance, J. E, 2003. Trafficking of cholesterol from cell bodies to distal axons in Niemann Pick C1-deficient neurons. J. Biol. Chem. 278(6):4168-4175.

    Google Scholar 

  46. Tanaka, T., Tatsuno, I., Noguchi, Y., Uchida, D., Oeda, T., Narumiya, S., Yasuda, T., Higashi, H., Kitagawa, M., Nakayama, K., Saito, Y., and Hirai, A. 1998. Activation of cyclin-dependent kinase 2 (Cdk2)in growth-stimulated rat astrocytes. Geranylgeranylated Rho small GTPase(s)are essential for the induction of cyclin E gene expression. J. Biol. Chem. 273(41):26772-26778.

    Google Scholar 

  47. Danesh, F. R., Sadeghi, M. M., Amro, N., Philips, C., Zeng, L., Lin, S., Sahai, A., and Kanwar, Y. S. 2002. 3-Hydroxy-3-methylgiutaryl CoA reductase inhibitors prevent high glucose-induced proliferation of mesangial cells via modulation of Rho GTPase/p21 signaling pathway:Implications for diabetic nephropathy. Proc. Natl. Acad. Sci U. S. A, 99(12):8301-8305.

    Google Scholar 

  48. Molnar, G., Dagher, M. C., Geiszt, M., Settleman, J., and Ligeti, E. 2001. Role of prenylation in the interaction of Rho-family small GTPases with GTPase activating proteins. Biochemistry 40(35):10542-10549.

    Google Scholar 

  49. de Toledo, M., Senic-Matuglia, F., Salamero, J., Uze, G., Comunale, F., Fort, P., and Blangy, A. 2003. The GTP/GDP cycling of rho GTPase TCL is an essential regulator of the early endocytic pathway. Mol. Biol. Cell. 14(12):4846-4856.

    Google Scholar 

  50. Koo, E. H., and Squazzo, S. L. 1994. Evidence that production and release of amyloid beta-protein involves the endocytic pathway. J. Biol. Chem. 269(26):17386-17389.

    Google Scholar 

  51. Wild-Bode, C., Yamazaki, T., Capell, A., Leimer, U., Steiner, H., lhara, Y., and Haass, C. 1997, Intracellular generation and accumulation of amyloid beta-peptide terminating at amino acid 42. J. Biol. Chem. 272(26):16085-16088.

    Google Scholar 

  52. Cataldo, A. M., Peterho., C. M., Troncoso, J. C., Gomez-lsla, T., Hyman, B. T., and Nixon, R. A. 2000. Endocytic pathway abnormalities precede amyloid beta deposition in sporadic Alzheimer 's disease and Down syndrome:differential effects of APOE genotype and presenilin mutations. Am. J. Pathol. 157(1):277-286.

    Google Scholar 

  53. Kojro, E., Gimpl, G., Lammich, S., Marz, W., and Fahrenholz, F. 2001. Low cholesterol stimulates the nonamyloido-genic pathway by its effecton the alpha-secretase ADAM 10. Proc. Nail. Acad. Sci. U. S. A. 98(10):5815-5820.

    Google Scholar 

  54. Ehehalt, R., Keller, P., Haass, C., Thiele, C., and Simons, K. 2003. Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J. Cell Biol. 160(1):113-123.

    Google Scholar 

  55. Puglielli, L., Konopka, G., Pack-Chung, E., Ingano, L. A., Berezovska, O., Hyman, B. T., Chang T. Y., Tanzi, R. E., and Kovacs, D. M. 2001. Acylcoenzyme A:cholesterol acyltransferase modulates the generation of the amyloid beta-peptide. Nat. Cell Biol. 3(10):905-912.

    Google Scholar 

  56. Davies, J. P., Chen, F. W., and Ioannou, Y. A. 2000. Transmembrane molecular pump activity of Niemann-Pick C1 protein. Science 290(5500):2295-2298.

    Google Scholar 

  57. Yamazaki, T., Chang, T. Y., Haass, C., and Ihara, Y. 2001. Accumulation and aggregation of amyloid beta-protein in late endosomes of Niemann-pick type C cells. J. Biol. Chem. 276(6):4454-4460.

    Google Scholar 

  58. Fukumoto, H., Deng, A., Irizarry, M. C., Fitzgerald, M. L., and Rebeck, G. W. 2002. Induction of the cholesterol transporter ABCA1 in central nervous system cells by liver X receptor agonists increases secreted Abeta levels. J. Biol. Chem. 277(50):48508-48513.

    Google Scholar 

  59. Garcia-Roman, N., Alvarez, A. M., Toro, M. J., Montes, A., and Lorenzo, M. J. 2001. Lovastatin induces apoptosis of spontaneously immortalized rat brain neuroblasts:involvement of nonsterol isoprenoid biosynthesis inhibition. Mol. Cell Neurosci. 17(2):329-341.

    Google Scholar 

  60. Monje, M. L., Toda, H., and Palmer, T. D. 2003. Inflaammatory blockade restores adult hippocampal neurogenesis Science 302(5651):1760-1765.

    Google Scholar 

  61. Konsman, J. P., Parnet, P., and Dantzer, R. 2002. Cytokine-induced sickness behaviour:mechanisms and implications. Trends. Neurosci. 25(3):154-159.

    Google Scholar 

  62. Capuron. L. and Dantzer. R. 2003. Cytokines and depression: The need for a new paradigm. Brain Behav. Immun. 17 (Suppl 1). S119-124.

    Google Scholar 

  63. Noe, B., Hagenbuch, B., Stieger, B., and Meier, P. J. 1997. Isolation of a multispecific organic anion and cardiac glycoside transporter from rat brain. Proc. Natl. Acad. Sci. U. S. A. 94(19):10346-10350.

    Google Scholar 

  64. Gao, B., Stieger, B., Noe, B., Fritschy, J. M., and Meier, P. J. 1999. Localization of the organic anion transporting polypeptide 2 (Oatp2)in capillary endothelium and choroid plexus epithelium of rat brain. J. Histochem. Cytochem. 47(10):1255-1264.

    Google Scholar 

  65. de Chaves, E. I., Rusinol, A. E., Vance, D. E., Campenot, R. B., and Vance, J. E. 1997. Role of lipoproteins in the deliv-ery of lipids to axons during axonal regeneration. J. Biol. Chem. 272(49):30766-30773.

    Google Scholar 

  66. Hsiang, B., Zhu, Y., Wang, Z., Wu, Y., Sasseville, V., Yang, W. P., and Kirchgessner, T. G. 1999. A novel human hepatic organic anion transporting polypeptide (OATP2). Identification of a liver-specific human organic anion transporting polypeptide and identification of rat and human hydroxymethylglutaryl-CoA reductase inhibitor transporters. J. Biol. Chem. 274(52):37161-37168.

    Google Scholar 

  67. van Vliet, A. K., van Thiel, G. C., Huisman, R. H., Moshage, H., Yap, S. H., and Cohen, L. H. 1995. Different effects of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors on sterol synthesis in various human cell types. Biochim. Bio-phys. Acta. 1254(1):105-111.

    Google Scholar 

  68. Cohen, L. H., van Leeuwen, R. E., van Thiel, G. C., van Pelt, J. F., and Yap, S. H. 2000. Equally potent inhibitors of cho-lesterol synthesis in human hepatocytes have distinguishable effects on different cytochrome P450 enzymes. Biopharm. Drug. Dispos. 21(9):353-364.

    Google Scholar 

  69. Rosenson, R. S. 2004. Current view of statin-induced myopathy. Am. J. Med. 116(6):775-777.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chauhan, N.B., Siegel, G.J. & Feinstein, D.L. Effects of Lovastatin and Pravastatin on Amyloid Processing and Inflammatory Response in TgCRND8 Brain. Neurochem Res 29, 1897–1911 (2004). https://doi.org/10.1023/B:NERE.0000042217.90204.8d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000042217.90204.8d

Navigation