Skip to main content
Log in

Development of a new transformation-competent artificial chromosome (TAC) vector and construction of tomato and rice TAC libraries

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Recent research has shown that BIBAC (binary bacterial artificial chromosome) and TAC (transformation-competent artificial chromosome) vector systems are very useful tools for map-based cloning of agronomically important genes in plant species. We have developed a new TAC vector that is suitable for both dicot and monocot transformation. Using this new TAC vector, we constructed large-insert genomic libraries of tomato and rice. The tomato library contains 96,996 clones (28.3-38.5 kb insert size) and has 3.18 haploid genome equivalents. The rice TAC library has 32.7 kb average insert size and has 9.24 haploid genome equivalents. The quality of these two libraries was tested using PCR to verify genome coverage. Individual clones were characterized to confirm insert integrity by Southern analysis, end sequencing and genetic mapping. To investigate the potential application of these TAC libraries in map-based cloning, TAC constructs containing a 45 kb fragment were introduced into the rice genome via Agrobacterium-mediated transformation. Molecular analysis indicates that the 45 kb fragment was successfully transferred into the rice genome. Although rearrangements of the introduced DNA were detected, 50% of regenerated plants contained at least one intact copy of the 45 kb clone and associated vector sequences. These libraries provide us with a valuable resource to rapidly isolate important genes in tomato and rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arumuganathan K. and Earle E.D. 1991. Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9: 208–219.

    Google Scholar 

  • Bent A.F., Kunkel B.N., Dahlbeck D., Brown K.L., Schmidt R., Giraudat J., Leung J. and Staskawicz B.J. 1994. RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science 265: 1856–1860.

    Google Scholar 

  • Bentolila S. and Hanson M.R. 2001. Identification of a BIBAC clone that co-segregates with the petunia restorer of fertility (Rf) gene. Mol. Genet. Genomics 266: 223–230.

    Google Scholar 

  • Brommonschenkel S.H. and Tanksley S.D. 1997. Map-based cloning of the tomato genomic region that spans the Sw-5 tospovirus resistance gene in tomato. Mol. Gen. Gent. 256: 121–126.

    Google Scholar 

  • Burke D.T., Carle G.F. and Olson M.V. 1987. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236: 806–812.

    Google Scholar 

  • Chang J.H., Tai Y.S., Bernal A.J., Lavelle D.T., Staskawicz B.J. and Michelmore R.W. 2002. Functional analyses of the Pto resistance gene family in tomato and the identification of a minor resistance determinant in a susceptible haplotype. Mol. Plant Microbe Interact. 15: 281–291.

    Google Scholar 

  • Chen D.H. and Ronald P.C. 1999. A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol. Biol. Rep. 17: 53–57.

    Google Scholar 

  • Clarke L. and Carbon J. 1976. A colony bank containing synthetic ColE1 hybrid plasmids representative of the entire E. coli. genome. Cell 9: 91–100.

    Google Scholar 

  • Collins J. and Hohn B. 1978. Cosmids: A type of plasmid genecloning vector that is packageable in vitro in bacteriophage lambda heads. Proc. Natl. Acad. Sci. USA 75: 4242–4246.

    Google Scholar 

  • Danesh D., Penuela S., Mudge J., Denny R.L., Nordstrom H., Martinez J.P. and Young N.D. 1998. A bacterial artificial chromosome library for soybean and identification of clones near a major cyst nematode resistance gene. Theor. Appl. Genet. 96: 196–202.

    Google Scholar 

  • Frary A. and Hamilton C.M. 2001. Efficiency and stability of high molecular weight DNA transformation: an analysis in tomato. Transgenic Res. 10: 121–132.

    Google Scholar 

  • Goff S.A., Ricke D., Lan T.H., Presting G., Wang R., Dunn M., Glazebrook J., Sessions A., Oeller P., Varma H., Hadley D., Hutchison D., Martin C., Katagiri F., Lange B.M., Moughamer T., Xia Y., Budworth P., Zhong J., Miguel T., Paszkowski U., Zhang S., Colbert M., Sun W.L., Chen L., Cooper B., Park S., Wood T.C., Mao L., Quail P., Wing R., Dean R., Yu Y., Zharkikh A., Shen R., Sahasrabudhe S., Thomas A., Cannings R., Gutin A., Pruss D., Reid J., Tavtigian S., Mitchell J., Eldredge G., Scholl T., Miller R.M., Bhatnagar S., Adey N., Rubano T., Tusneem N., Robinson R., Feldhaus J., Macalma T., Oliphant A. and Briggs S. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296: 92–100.

    Google Scholar 

  • Hamilton C.M., Frary A., Lewis C. and Tanksley S.D. 1996. Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc. Natl. Acad. Sci. USA 93: 9975–9979.

    Google Scholar 

  • Hamilton C.M. 1997. A binary-BAC system for plant transformation with high-molecular-weight DNA. Gene 200: 107–116.

    Google Scholar 

  • Hamilton C.M., Frary A., Xu Y., Tanksley S.D. and Zhang H.-B. 1999. Construction of tomato genomic DNA libraries in a binary-BAC (BIBAC) vector. Plant J. 18: 223–229.

    Google Scholar 

  • Han C.S., Sutherland R.D., Jewett P.B., Campbell M.L., Meincke L.J., Tesmer J.G., Mundt M.O., Fawcett J.J., Kim U.J., Deaven L.L. and Doggett N.A. 2000. Construction of a BAC contig map of chromosome 16q by two-dimensional overgo hybridization. Genome Res. 10: 714–712.

    Google Scholar 

  • Hiei Y., Ohta S., Komari T. and Kumashiro T. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6: 271–282.

    Google Scholar 

  • Ioannou P.A., Amemiya C.T., Garnes J., Kroisel P.M., Shizuya H., Chen C., Batzer M.A., and de Jong P.J. 1994. A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nature Genet. 6: 84–89.

    Google Scholar 

  • Jeon J.S., Lee S., Jung K.H., Yang W.S., Yi G.H., Oh B.G. and An G. 2000. Production of transgenic rice plants showing reduced heading date and plant height by ectopic expression of rice MADS-box genes. Mol. Breeding 6: 581–592.

    Google Scholar 

  • Jouanin L., Vilaine F.E. and Casse-Delbart F. 1985. Localization and restriction maps of the replication origin regions of the plasmids of Agrobacterium rhizogenes strain A4. Mol. Gen. Genet. 201: 370–374.

    Google Scholar 

  • Kabelka E.A., Franchino B., and Francis D.M. 2002. Two loci from Lycopersicon hirsutum LA407 confer resistance to strains of Clavibacter michiganensis subsp. michiganensis. Phytopathology. 92: 504–510.

    Google Scholar 

  • Kumar S. and Fladung M. 2002. Transgene integration in aspen: structures of integration sites and mechanism of T-DNA integration. Plant J. 31: 543–551.

    Google Scholar 

  • Liu G., Lu G., Zeng L. and Wang G.-L. 2002. Two broad-spectrum blast resistance genes, Pi9(t) and Pi2(t), are physically linked on rice chromosome 6. Mol. Genet. Genomics 267: 472–480.

    Google Scholar 

  • Liu Y.G., Mitsukawa N., Vazquez-Tello A. and Whittier R.F. 1995. Generation of a high-quality P1 library of Arabidopsis suitable for chromosome walking. Plant J. 7: 351–358.

    Google Scholar 

  • Liu Y.G., Shirano Y., Fukaki H., Yanai Y., Takasa M., Tabata S. and Shibata D. 1999. Complementation of plant mutants with large DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. Proc. Natl. Acad. Sci. USA 96: 6535–6540.

    Google Scholar 

  • Liu Y.G., Nagaki K., Fujita M., Kawaura K., Uozumi M. and Ogihara Y. 2000. Development of an efficient maintenance and screening system for large-insert genomic DNA libraries of hexaploid wheat in a transformation-competent artificial chromosome (TAC) vector. Plant J. 23: 687–695.

    Google Scholar 

  • Liu Y.G., Liu H., Chen L., Qiu W., Zhang Q., Wu H., Yang C., Su J., Wang Z., Tian D. and Mei M. 2002. Development of new transformation-competent artificial chromosome vectors and rice genomic libraries for efficient gene cloning. Gene 282(1-2): 247-255.

    Google Scholar 

  • Meksem K., Zobrist K., Ruben E., Hyten D., Tao Q., Zhang H.-B. and Lightfoot D.A. 2000. Two large-insert soybean genomic libraries constructed in a binary vector: applications in chromosome walking and genome wide physical mapping. Theor. Appl. Genet. 101: 747–755.

    Google Scholar 

  • Men A.E., Meksem K., Kassem M.A., Lohar D., Stiller J., Lightfoot D. and Gresshoff P.M. 2001. A bacterial artificial chromosome library of Lotus japonicus constructed in an Agrobacterium tumefaciens-transformable vector. Mol. Plant Microbe Interact. 14: 422–425.

    Google Scholar 

  • Pierce J.C., Sauer B. and Sternberg N. 1992. A positive selection vector for cloning high molecular weight DNA by the bacteriophage P1 system: improved cloning efficacy. Proc. Natl. Acad. Sci. USA 89: 2056–2060.

    Google Scholar 

  • Saghai-Maroof M.A., Soliman K.M., Jorgensen R.A. and Allard R.W. 1984 Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. USA 81: 8014–8018.

    Google Scholar 

  • Sambrook J., Fritsch E.M. and Maniatis T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA.

    Google Scholar 

  • Shibata D. and Liu Y.G. 2000. Agrobacterium-mediated plant transformation with large DNA fragments. Trends Plant Sci. 5: 354–357.

    Google Scholar 

  • Shizuya H., Birren B., Kim U.J., Mancino V., Slepak T., Tachiiri Y. and Simon M. 1992. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl. Acad. Sci. USA 89: 8794–8797.

    Google Scholar 

  • Song J. Bradeen J.M., Naess S.K., Helgeson JP and Jiang J. 2002. Stability analysis of large-insert DNA clones in Agrobacterium and subsequent plant transformation. Abstract of the International Plant & Animal Genome VIII Conference. San Diego, California, USA, January 12-16, 2002, pp 685.

  • Sternberg N. 1990. Bacteriophage P1 cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs. Proc. Natl. Acad. Sci. USA 87: 103–107.

    Google Scholar 

  • Tao Q. and Zhang H.B. 1998. Cloning and stable maintenance of DNA fragments over 300 kb in Escherichia coli with conventional plasmid-based vectors. Nucleic Acids Res. 26: 4901–4909.

    Google Scholar 

  • Wang G.-L., Holsten T.E., Song W.Y., Wang H.P. and Ronald P.C. 1995. Construction of a rice bacterial artificial chromosome library and identification of clones linked to the Xa-21 disease resistance locus. Plant J. 7: 525–533.

    Google Scholar 

  • Woo S., Jiang J., Gill B., Paterson A. and Wing R. 1994. Construction and characterization of a bacterial artificial chromosome library of Sorghum bicolor. Nucleic Acids Res. 22: 4922–4931.

    Google Scholar 

  • Yin Z. and Wang G.-L. 2000. Evidence of multiple complex patterns of T-DNA integration into the rice genome. Theor. Appl. Genet. 100: 461–470

    Google Scholar 

  • Yu J., Hu S., Wang J., Wong G.K., Li S., Liu B., Deng Y., Dai L., Zhou Y., Zhang X., Cao M., Liu J., Sun J., Tang J., Chen Y., Huang X., Lin W., Ye C., Tong W., Cong L., Geng J., Han Y., Li L., Li W., Hu G., Huang X., Li W., Li J., Liu Z., Li L., Liu J., Qi Q., Liu J., Li L., Li T., Wang X., Lu H., Wu T., Zhu M., Ni P., Han H., Dong W., Ren X., Feng X., Cui P., Li X., Wang H., Xu X., Zhai W., Xu Z., Zhang J., He S., Zhang J., Xu J., Zhang K., Zheng X., Dong J., Zeng W., Tao L., Ye J., Tan J., Ren X., Chen X., He J., Liu D., Tian W., Tian C., Xia H., Bao Q., Li G., Gao H., Cao T., Wang J., Zhao W., Li P., Chen W., Wang X., Zhang Y., Hu J., Wang J., Liu S., Yang J., Zhang G., Xiong Y., Li Z., Mao L., Zhou C., Zhu Z., Chen R., Hao B., Zheng W., Chen S., Guo W., Li G., Liu S., Tao M., Wang J., Zhu L., Yuan L. and Yang H. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296: 79–92.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, S., Coaker, G., Francis, D. et al. Development of a new transformation-competent artificial chromosome (TAC) vector and construction of tomato and rice TAC libraries. Molecular Breeding 12, 297–308 (2003). https://doi.org/10.1023/B:MOLB.0000006813.53778.64

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MOLB.0000006813.53778.64

Navigation