Skip to main content
Log in

Peptide arrays with designed α-helical structures for characterization of proteins from FRET fingerprint patterns

  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A practical high-throughput protein detection system is described, based on synthetic peptide arrays consisting of designed α-helical peptides, detected by fluorescence resonance energy transfer (FRET). Initially a model α-helical peptide known to interact with a structured protein, calmodulin, was selected to establish the strategy for high-throughput detection. In comparison to peptides with a single probe, a much higher FRET response has been observed with two fluorescent probes (7-diethylaminocoumarin-3-carboxylic acid and 5(6)-carboxy-fluorescein) at both termini of the synthetic peptides. To establish a reproducible high-throughput detection system, peptides were also immobilized onto a solid surface for detection of the target proteins. A small library of 112 different peptides was constructed, based on a model of the α-helical peptide with systematic replacement of residues carrying specific charges and/or hydrophobicities. The library was used to effectively characterize various proteins, giving their own `protein fingerprint' patterns. The resulting `protein fingerprints' correlate with the recognition properties of the proteins. The present microarray with designed synthetic peptides as the capturing agents is promising for the development of protein detection chips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Niemeyer, C. M. and Blohm, D., DNA microarrays, Angew. Chem. Int. Ed., 38 (1999) 2865-2869; Angew. Chem., 111 (1999) 3039-3043.

    Google Scholar 

  2. DeRisi, J. L., Iyer, V. R. and Brown, P. O., Exploring the metabolic and genetic control of gene expression on a genomic scale, Science, 278 (1997) 680-686.

    PubMed  Google Scholar 

  3. Gygi, S. P., Rochon, Y., Franza, B. R. and Aebersold, R., Correlation between protein and mRNA abundance in yeast, Mol. Cell. Biol., 19 (1999) 1720-1730.

    PubMed  Google Scholar 

  4. Anderson, N. L. and Anderson, N. G., Proteome and proteomics: New technologies, new concepts, and new words, Electrophoresis, 19 (1998) 1853-1861.

    PubMed  Google Scholar 

  5. Shevchenko, A., Jensen, O. N., Podtelejnikov, A. V., Sagliocco, F., Wilm, M., Vorm, O., Mortensen, P., Shevchenko, A., Boucherie, H. and Mann, M., Linking genome and proteome by mass spectrometry: Large-scale identification of yeast proteins from two dimensional gels, Proc. Natl. Acad. Sci. USA, 93 (1996) 14440-14445.

    PubMed  Google Scholar 

  6. Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H. and Aebersold, R., Quantitative analysis of complex protein mixtures using isotope-coded affinity tags, Nat. Biotech., 17 (1999) 994-999.

    Google Scholar 

  7. Natsume, T., Nakayama, H. and Isobe, T., BIA-MS-MS: Biomolecular interaction analysis for functional proteomics, Trends Biotech., 19 (Suppl.) (2001) S28–S33.

    Google Scholar 

  8. MacBeath, G. and Schreiber, S. L., Printing proteins as microarrays for high-throughput function determination, Science, 289 (2000) 1760–1763.

    PubMed  Google Scholar 

  9. Arenkov, P., Kukhtin, A., Gemmell, A., Voloshchuk, S., Chupeeva, V. and Mirzabekov, A., Protein microchips: Use for immunoassay and enzymatic reactions, Anal. Biochem., 278 (2000) 123-131.

    PubMed  Google Scholar 

  10. Zhu, H. and Snyder, M., Protein arrays and microarrays, Curr. Opin. Chem. Biol., 5 (2001) 40-45.

    PubMed  Google Scholar 

  11. Zhu, H., Bilgin, M., Bangham, R., Hall, D., Casamayor, A., Bertone, P., Lan, N., Jansen, R., Bidlingmaier, S., Houfek, T., Mitchell, T., Miller, P., Dean, R. A., Gerstein, M. and Snyder, M., Global analysis of protein activities using proteome chips, Science, 293 (2001) 2101-2105.

    PubMed  Google Scholar 

  12. Templin, M. F., Stoll, D., Schrenk, M., Traub, P. C., Vöhringer, C. F. and Joos, T. O., Protein microarray technology, Trends Biotech., 20 (2002) 160-166.

    Google Scholar 

  13. Wilson, D. S. and Nock, S., Recent developments in protein microarray technology, Angew. Chem. Int. Ed., 42 (2003) 494-500; Angew. Chem., 115 (2003) 510-517.

    Google Scholar 

  14. Mitchell, P., A perspective on protein microarrays, Nat. Biotech., 20 (2002) 225–229.

    Google Scholar 

  15. Takahashi, M., Nokihara, K. and Mihara, H., Construction of a protein-detection system using a loop peptide library with a fluorescence label, Chem. Biol., 10 (2003) 53–60.

    PubMed  Google Scholar 

  16. Chan, W. C. and White, P. D., Fmoc solid phase peptide synthesis: A practical approach, Oxford University Press, New York, 2000.

    Google Scholar 

  17. Gregorius, K., Mouritsen, S. and Elsner, H. I., Hydrocoating: A new method for coupling biomolecules to solid phases, J. Immunol. Meth., 181 (1995) 65-73.

    Google Scholar 

  18. Wahler, D., Badalassi, F., Crotti, P. and Reymond, J. L., Enzyme fingerprints of activity, and stereo-and enantioselectivity from fluorogenic and chromogenic substrate arrays, Chem. Eur. J., 8 (2002) 3211-3228.

    Google Scholar 

  19. O'Neil, K. T. and DeGrado, W. F., How calmodulin binds its targets: Sequence independent recognition of amphiphilic a-helices, Trends Biol. Sci., 15 (1990) 59–64.

    Google Scholar 

  20. Maulet, Y. and Cox, J. A., Structural changes in melittin and calmodulin upon complex formation and their modulation by calcium, Biochemistry, 22 (1983) 5680-5686.

    PubMed  Google Scholar 

  21. Cox, J. A., Comte, M., Fitton, J. E. and DeGrado, W. F., The interaction of calmodulin with amphiphilic peptides, J. Biol. Chem., 260 (1985) 2527-2534.

    PubMed  Google Scholar 

  22. Greenfield, N. and Fasman, G. D., Computed circular dichroism spectra for the evaluation of protein conformation, Biochemistry, 8 (1969) 4108-4116.

    PubMed  Google Scholar 

  23. Kuwabara, T., Nakamura, A., Ueno, A. and Toda, F., Inclusion complexes and guest-induced color changes of pH-indicator-modified β-cyclodextrins.J. Phys. Chem., 98 (1994) 6297-6303.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usui, K., Takahashi, M., Nokihara, K. et al. Peptide arrays with designed α-helical structures for characterization of proteins from FRET fingerprint patterns. Mol Divers 8, 209–218 (2004). https://doi.org/10.1023/B:MODI.0000036237.82584.2d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MODI.0000036237.82584.2d

Navigation