Skip to main content

Advertisement

Log in

The p50-p50 NF-κB complex as a stimulus-specific repressor of gene activation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The transcription factor NF-κB can be activated in different forms, including transcriptional activating and repressing forms. Intestinal epithelial cells have been found to modulate the relative levels of the p65-p50 and p50-p50 NF-κB complexes in a number of instances, and here we show that this ratio was altered in response to dietary fiber (wheat bran) and carcinogen exposure (azoxymethane). The influence of these complexes on gene regulation was examined in more detail in cell culture models. The colon-derived HT-29 cell line likewise activated both p65-p50 and p50-p50 NF-κB complexes: TNF-α triggered a strong, sustained p65-p50 activation with lower relative levels of p50-p50, whereas IL-1β transiently activated p65-p50 with higher relative levels of p50-p50. Transfection experiments with an NF-κB reporter plasmid indicated that p50 was a repressor in HT-29 cells. Increased expression of the p50-p50 dimer by an adenovirus showed that the p50-p50 dimer suppressed IL-1β activation of endogenous genes more than 5-fold (TNF-α, Cox-2 and IL-8), whereas gene activation by TNF-α was not significantly affected. DNA binding analyses showed a number of strong p50-p50 binding sites on these promoters. The selective p50-p50 suppression of IL-1β gene activation corresponded to the transient nature of p65-p50 activation induced by IL-1β (in both HT-29 and Caco-2 cells). Our findings demonstrate a novel gene regulatory mechanism for the NF-κB p50-p50 complex: a signal-specific transcriptional repression that appears to selectively inhibit stimuli that transiently activate p65-p50 complexes. (Mol Cell Biochem 265: 171–183, 2004)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schottelius AJ, Baldwin AS, Jr: Arole for transcription factor NF-kappa B inintestinal inflammation. Int J Colorectal Dis 14: 18–28, 1999

    Google Scholar 

  2. Mayo MW, Baldwin AS: The transcription factor NF-kappaB: Control of oncogenesis and cancer therapy resistance. Biochim Biophys Acta 1470: M55–M62, 2000

    Google Scholar 

  3. Yamamoto Y, Gaynor RB: Role of the NF-kappaB pathway in the patho-genesis of human disease states. Curr Mol Med 1: 287–296, 2001

    Google Scholar 

  4. Li Q, Verma IM: NF-kappaB regulation in the immune system. Nat Rev Immunol 2: 725–734, 2002

    Google Scholar 

  5. Ghosh S, May MJ, Kopp EB: NF-kappa B and Rel proteins: Evolution-arily conserved mediators of immune responses. Annu Rev Immunol 16: 225–260, 1998

    Google Scholar 

  6. Karin M, Ben-Neriah Y: Phosphorylation meets ubiquitination: The con-trol of NF-[kappa]B activity. Annu Rev Immunol 18: 621–663, 2000

    Google Scholar 

  7. Malek S, Huxford T, Ghosh G: Ikappa Balpha functions through direct contacts with the nuclear localization signals and the DNA binding sequences of NF-kappaB. J Biol Chem 273: 25427–25435, 1998

    Google Scholar 

  8. Latimer M, Ernst MK, Dunn LL, Drutskaya M, Rice NR: The N-terminal domain of IkappaB alpha masks the nuclear localization signal(s) of p50 and c-Rel homodimers. Mol Cell Biol 18: 2640–2649, 1998

    Google Scholar 

  9. Hoffmann A, Levchenko A, Scott ML, Baltimore D: The IkappaB-NF-kappaB signaling module: Temporal control and selective gene activa-tion. Science 298: 1241–1245, 2002

    Google Scholar 

  10. Thompson JE, Phillips RJ, Erdjument-Bromage H, Tempst P, Ghosh S: I kappa B-beta regulates the persistent response in a biphasic activation of NF-kappa B. Cell 80: 573–582, 1995

    Google Scholar 

  11. Johnson DR, Douglas I, Jahnke A, Ghosh S, Pober JS: A sustained reduction in IkappaB-beta may contribute to persistent NF-kappaB ac-tivation in human endothelial cells. J Biol Chem 271: 16317–16322, 1996

    Google Scholar 

  12. Lin L, DeMartino GN, Greene WC: Cotranslational biogenesis of NF-kappaB p50 by the 26S proteasome. Cell 92: 819–828, 1998

    Google Scholar 

  13. Heusch M, Lin L, Geleziunas R, Greene WC: The generation of nfkb2 p52: Mechanism and efficiency. Oncogene 18: 6201–6208, 1999

    Google Scholar 

  14. Kunsch C, Ruben SM, Rosen CA: Selection of optimal kappa B/Rel DNA-binding motifs: interaction of both subunits of NF-kappa B with DNA is required for transcriptional activation. Mol Cell Biol 12: 4412–4421, 1992

    Google Scholar 

  15. Fujita T, Nolan GP, Ghosh S, Baltimore D: Independent modes of tran-scriptional activation by the p50 and p65 subunits of NF-kappa B. Genes Dev 6: 775–787, 1992

    Google Scholar 

  16. Baer M, Dillner A, Schwartz RC, Sedon C, Nedospasov S, Johnson PF: Tumor necrosis factor alpha transcription in macrophages is attenuated by an autocrine factor that preferentially induces NF-kappaB p50. Mol Cell Biol 18: 5678–5689, 1998

    Google Scholar 

  17. Zhong H, May MJ, Jimi E, Ghosh S: The phosphorylation status of nu-clear NF-kappa B determines its association with CBP/p300 or HDAC-1. Mol Cell 9: 625–636, 2002

    Google Scholar 

  18. Nakamura Y, Grumont RJ, Gerondakis S: NF-kappaB1 can inhibit v-Abl-induced lymphoid transformation by functioning as a negative reg-ulator of cyclin D1 expression. Mol Cell Biol 22: 5563–5574, 2002

    Google Scholar 

  19. Ziegler-Heitbrock HW, Wedel A, Schraut W, Strobel M, Wendelgass P, Sternsdorf T, Bauerle PA, Haas JG, Riethmuller G: Tolerance to lipo-polysaccharide involves mobilization of nuclear factor kappa Bwith pre-dominance of p50 homodimers. J Biol Chem 269: 17001–17004, 1994

    Google Scholar 

  20. Kastenbauer S, Ziegler-Heitbrock HW:NF-kappaB1 (p50) is upreg-ulated in lipopolysaccharide tolerance and can block tumor necrosis factor gene expression. Infect Immun 67: 1553–1559, 1999

    Google Scholar 

  21. Bohuslav J, Kravchenko VV, Parry GC, Erlich JH, Gerondakis S, Mackman N, Ulevitch RJ: Regulation of an essential innate immune response by the p50 subunit of NF-kappaB. J Clin Invest 102: 1645–1652, 1998

    Google Scholar 

  22. Sha WC, Liou HC, Tuomanen EI, Baltimore D: Targeted disruption of the p50 subunit of NF-kappa B leads to multifocal defects in immune responses. Cell 80: 321–330, 1995

    Google Scholar 

  23. Ganchi PA, Sun SC, Greene WC, Ballard DW: A novel NF-kappa B complex containing p65 homodimers: implications for transcriptional control at the level of subunit dimerization. Mol Cell Biol 13: 7826–7835, 1993

    Google Scholar 

  24. Zhang W, Kone BC: NF-kappaB inhibits transcription of the H( +)-K( +)-ATPase alpha(2)-subunit gene: role of histone deacetylases. Am J Physiol Renal Physiol 283: F904–F911, 2002

    Google Scholar 

  25. Jobin C, Sartor RB: The I kappa B/NF-kappa B system: A key determi-nant of mucosalinflammation and protection. Am J Physiol Cell Physiol 278: C451–C462, 2000

    Google Scholar 

  26. Jobin C, Haskill S, Mayer L, Panja A, Sartor RB: Evidence for altered regulation of I kappa B alpha degradation in human colonic epithelial cells. J Immunol 158: 226–234, 1997

    Google Scholar 

  27. Wu GD, Huang N, Wen X, Keilbaugh SA, Yang H: High-level expres-sion of I kappa B-beta in the surface epithelium of the colon: In vitro evidence for an immunomodulatory role. J Leukoc Biol 66: 1049–1056, 1999

    Google Scholar 

  28. Inan MS, Place R, Tolmacheva V, Wang QS, Hubbard AK, Rosenberg DW, Giardina C: IkappaBbeta-related proteins in normal and trans-formed colonic epithelial cells. Mol Carcinog 29: 25–36, 2000

    Google Scholar 

  29. Inan MS, Tolmacheva V, Wang QS, Rosenberg DW, Giardina C: Tran-scription factor NF-kappaB participates in regulation of epithelial cell turnover in the colon. Am J Physiol Gastrointest Liver Physiol 279: G1282–G1291, 2000

    Google Scholar 

  30. Yin L, Laevsky G, Giardina C: Butyrate suppression of colonocyte NF-kappa B activation and cellular proteasome activity. J Biol Chem 276: 44641–44646, 2001

    Google Scholar 

  31. Segain JP, Raingeard de la Bletiere D, Bourreille A, Leray V, Gervois N, Rosales C, Ferrier L, Bonnet C, Blottiere HM, Galmiche JP: Bu-tyrate inhibits inflammatory responses through NFkappaB inhibition: Implications for Crohn's disease. Gut 47: 397–403, 2000

    Google Scholar 

  32. Chakravortty D, Koide N, Kato Y, Sugiyama T, Mu MM, Yoshida T, Yokochi T: The inhibitory action of butyrate on lipopolysaccharide-induced nitric oxide production in RAW264.7 murine macrophage cells. J Endotoxin Res 6: 243–247, 2000

    Google Scholar 

  33. Luhrs H, Gerke T, Schauber J, Dusel G, Melcher R, Scheppach W, Menzel T: Cytokine-activated degradation of inhibitory kappaB protein alpha is inhibited by the short-chain fatty acid butyrate. Int J Colorectal Dis 16: 195–201, 2001

    Google Scholar 

  34. Inan MS, Rasoulpour RJ, Yin L, Hubbard AK, Rosenberg DW, Giardina C: The luminal short-chain fatty acid butyrate modulates NF-kappaB activity in a human colonic epithelial cell line. Gastroenterology 118: 724–734, 2000

    Google Scholar 

  35. Erdman S, Fox JG, Dangler CA, Feldman D, Horwitz BH: Typhlocolitis in NF-kappa B-deficient mice. J Immunol 166: 1443–1447, 2001

    Google Scholar 

  36. Place RF, Haspeslagh D, Giardina C: Induced stabilization of Ikappa-Balpha can facilitate its re-synthesis and prevent sequential degradation. J Cell Physiol 195: 470–478, 2003

    Google Scholar 

  37. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B: A simpli-fied system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 95: 2509–2514, 1998

    Google Scholar 

  38. Yao J, Mackman N, Edgington TS, Fan ST: Lipopolysaccharide induc-tion of the tumor necrosis factor-alpha promoter in human monocytic cells. Regulation by Egr-1, c-Jun, and NF-kappaB transcription factors. J Biol Chem 272: 17795–17801, 1997

    Google Scholar 

  39. Dunn SM, Coles LS, Lang RK, Gerondakis S, Vadas MA, Shannon MF: Requirement for nuclear factor (NF)-kappa B p65 and NF-interleukin-6 binding elements in the tumor necrosis factor response region of the granulocyte colony-stimulating factor promoter. Blood 83: 2469–2479, 1994

    Google Scholar 

  40. Kunsch C, Rosen CA: NF-kappa B subunit-specific regulation of the interleukin-8 promoter. Mol Cell Biol 13: 6137–6146, 1993

    Google Scholar 

  41. Stein B, Baldwin AS, Jr: Distinct mechanisms for regulation of the interleukin-8 gene involve synergism and cooperativity between C/EBP and NF-kappa B. Mol Cell Biol 13: 7191–7198, 1993

    Google Scholar 

  42. Newton R, Stevens DA, Hart LA, Lindsay M, Adcock IM, Barnes PJ: Superinduction of COX-2 mRNA by cycloheximide and interleukin-1beta involves increased transcription and correlates with increased NF-kappaB and JNK activation. FEBS Lett 418: 135–138, 1997

    Google Scholar 

  43. Yamamoto K, Arakawa T, Taketani Y, Takahashi Y, Hayashi Y, Ueda N, Yamamoto S, Kumegawa M: TNF alpha-dependent induction of cyclooxygenase-2 mediated by NF kappa B and NF-IL6. Adv Exp Med Biol 407: 185–189, 1997

    Google Scholar 

  44. Trede NS, Tsytsykova AV, Chatila T, Goldfeld AE, Geha RS: Transcrip-tional activation of the human TNF-alpha promoter by superantigen in human monocytic cells: Role of NF-kappa B. J Immunol 155: 902–908, 1995

    Google Scholar 

  45. Newton R, Kuitert LM, Bergmann M, Adcock IM, Barnes PJ: Evidence for involvement of NF-kappaB in the transcriptional control of COX-2 gene expression by IL-1beta. Biochem Biophys Res Commun 237: 28–32, 1997

    Google Scholar 

  46. Jacobs LR, White FA: Modulation of mucosal cell proliferation in the intestine of rats fed a wheat bran diet. Am J Clin Nutr 37: 945–953, 1983

    Google Scholar 

  47. Jacobs LR, Schneeman BO: Effects of dietary wheat bran on rat colonic structure and mucosal cell growth. J Nutr 111: 798–803, 1981

    Google Scholar 

  48. Ijiri K: Apoptosis (cell death) induced in mouse bowel by 1,2-dimethylhydrazine, methylazoxymethanol acetate, and gamma-rays. Cancer Res 49: 6342–6346, 1989

    Google Scholar 

  49. Li YQ, Fan CY, O'Connor PJ, Winton DJ, Potten CS: Target cells for the cytotoxic effects of carcinogens in the murine small bowel. Carcino-genesis 13: 361–368, 1992

    Google Scholar 

  50. Potten CS, Li YQ, O'Connor PJ, Winton DJ: A possible explanation for the differential cancer incidence in the intestine, based on distribu-tion of the cytotoxic effects of carcinogens in the murine large bowel. Carcinogenesis 13: 2305–2312, 1992

    Google Scholar 

  51. Papanikolaou A, Wang QS, Delker DA, Rosenberg DW: Azoxymethane-induced colon tumors and aberrant crypt foci in mice of different genetic susceptibility. Cancer Lett 130: 29–34, 1998

    Google Scholar 

  52. Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin AS Jr: NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol 19: 5785–5799, 1999

    Google Scholar 

  53. Hinz M, Krappmann D, Eichten A, Heder A, Scheidereit C, Strauss M: NF-kappaB function in growth control: Regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol Cell Biol 19: 2690–2698, 1999

    Google Scholar 

  54. Duyao MP, Buckler AJ, Sonenshein GE: Interaction of an NF-kappa B-like factor with a site upstream of the c-myc promoter. Proc Natl Acad Sci USA 87: 4727–4731, 1990

    Google Scholar 

  55. Madrid LV, Mayo MW, Reuther JY, Baldwin AS, Jr: Akt stimulates the transactivation potential of the RelA/p65 Subunit of NF-kappa Bthrough utilization of the Ikappa Bkinase and activation of the mitogen-activated protein kinase p38. J Biol Chem 276: 18934–18940, 2001

    Google Scholar 

  56. Sakurai H, Chiba H, Miyoshi H, Sugita T, Toriumi W: IkappaB kinases phosphorylate NF-kappaB p65 subunit on serine 536 in the transactivation domain. J Biol Chem 274: 30353–30356, 1999

    Google Scholar 

  57. De Plaen IG, Qu XW, Wang H, Tan XD, Wang L, Han XB, Rozenfeld RA, Hsueh W: Endotoxin, but not platelet-activating factor, activates nuclear factor-kappaB and increases IkappaBalpha and IkappaBbeta turnover in enterocytes. Immunology 106: 577–583, 2002

    Google Scholar 

  58. Wang H, Qu X, De Plaen IG, Hsueh W: Platelet-activating factor and en-dotoxin activate CCAAT/enhancer binding protein in rat small intestine. Br J Pharmacol 133: 713–721, 2001

    Google Scholar 

  59. De Plaen IG, Tan XD, Chang H, Wang L, Remick DG, Hsueh W: Lipopolysaccharide activates nuclear factor kappaB in rat intestine: role of endogenous platelet-activating factor and tumour necrosis factor. Br J Pharmacol 129: 307–314, 2000

    Google Scholar 

  60. De Plaen IG, Tan XD, Chang H, Qu XW, Liu QP, Hsueh W: Intesti-nal NF-kappaB is activated, mainly as p50 homodimers, by platelet-activating factor. Biochim Biophys Acta 1392: 185–192, 1998

    Google Scholar 

  61. Ziegler-Heitbrock L: The p50-homodimer mechanism in tolerance to LPS. J Endotoxin Res 7: 219–222, 2001

    Google Scholar 

  62. Ziegler-Heitbrock HW, Frankenberger M, Wedel A: Tolerance to lipopolysaccharide in human blood monocytes. Immunobiology 193: 217–223, 1995

    Google Scholar 

  63. Adib-Conquy M, Adrie C, Moine P, Asehnoune K, Fitting C, Pinsky MR, Dhainaut JF, Cavaillon JM: NF-kappaB expression in mononuclear cells of patients with sepsis resembles that observed in lipopolysaccharide tolerance. Am J Respir Crit Care Med 162: 1877–1883, 2000

    Google Scholar 

  64. Cogswell PC, Scheinman RI, Baldwin AS, Jr: Promoter of the human NF-kappa B p50/p105 gene. Regulation by NF-kappa B subunits and by c-REL. J Immunol 150: 2794–2804, 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, X., Yin, L., Washington, R. et al. The p50-p50 NF-κB complex as a stimulus-specific repressor of gene activation. Mol Cell Biochem 265, 171–183 (2004). https://doi.org/10.1023/B:MCBI.0000044394.66951.4d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCBI.0000044394.66951.4d

Navigation