Skip to main content
Log in

Caspase-3: Its potential involvement in Cr(III)-induced apoptosis of lymphocytes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In this study, we have examined the role of caspase-3 in apoptosis of lymphocytes induced by the chromium(III) complexes viz. tris-(1,10-phenanthroline)chromium(III) chloride (Cr(III)-phen) and trans-diaqua[1,3-bis(salicylideneamino)propane-chromium(III)] perchlorate (Cr(III)-salprn). Evidence for caspase-3 activation and poly(ADP-ribose) polymerase (PARP) cleavage in lymphocytes exposed to Cr(III) complexes is revealed through Western blotting analysis. Blocking the activity of caspase-3 with z-DEVD-fmk, prevents apoptosis as evidenced through [3H]-thymidine incorporation, DNA fragmentation assay and measurement of sub-G1 cells by flow cytometry. Pretreatment of lymphocytes with free radical scavengers completely attenuates the activity of caspase-3 suggesting that reactive oxygen species (ROS) are upstream activators of caspase-3. Preincubation of lymphocytes with PP2, a selective Src-family tyrosine kinase inhibitor, abolishes the activation of caspase-3 indicating that Src-family tyrosine kinases viz. p56lck, p59fyn and p53/56lyn are mediators of caspase-3 activation during Cr(III) exposure. Collectively, our findings support a plausible mechanism in which Cr(III) mediates ROS generation that precedes the up-regulation of p56lck, p59fyn and p53/56lyn which eventually activates caspase-3 to promote apoptotic cell death of lymphocytes. To our knowledge, this is the first report suggesting the importance of Src-family tyrosine kinases for the activation of caspase-3 in metal-induced apoptotic cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thompson CB: Apoptosis in the pathogenesis and treatment of disease. Science 267: 1456-1462, 1995

    PubMed  Google Scholar 

  2. Saikumar P, Dong Z, Mikhailov V, Denton M, Weinberg JM, Venkatachalam MA: Apoptosis: Definition, mechanisms, and relevance to disease. Am J Med 107: 489-506, 1999

    Article  PubMed  Google Scholar 

  3. Steller H: Mechanisms and genes of cell suicide. Science 267: 1445-1449, 1995

    PubMed  Google Scholar 

  4. Rathmell JC, Thompson CB: The central effectors of cell death in the immune system. Annu Rev Immunol 17: 781-828, 1999

    Article  PubMed  Google Scholar 

  5. Munday NA, Vaillancourt JP, Ali A, Casano FJ, Miller DK, Molineaux SM, Yamin TT, Yu VL, Nicholson DW: Molecular cloning and proapoptotic activity of ICEreIII and ICEreIIII, members of the ICE/CED-3 family of cysteine proteases. J Biol Chem 270: 15870-15876, 1995

    Article  PubMed  Google Scholar 

  6. Wang L, Miura M, Bergeron L, Zhu H, Yuan Y: Ich-1 and ICE/CED-3 related gene encodes both positive and negative regulators of programmed cell death. Cell 78: 739-750, 1994

    Article  PubMed  Google Scholar 

  7. Talanian RV, Quinlan C, Trautz S, Hackett MC, Mankovich JA, Banach D, Ghayur T, Brady KD, Wong WW: Substrate specificities of caspase family proteases. J Biol Chem 272: 9677-9682, 1997

    Article  PubMed  Google Scholar 

  8. Boldin MP, Goncharov TM, Goltsev YV, Wallach D: Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1 and TNF receptor-induced cell death. Cell 85: 803-815, 1996

    Article  PubMed  Google Scholar 

  9. Li P, Nijhawan D, Budihardjo I, Srinivasalu SM, Ahmad M, Alnemri MS, Wang X: Cytochrome c and dATP-dependent formation of Apaf-1/ caspase-9 complex initiates an apoptotic protease cascade. Cell 91: 479-489, 1997

    Article  PubMed  Google Scholar 

  10. Zaidi AU, McDonough JS, Klocke BJ, Latham CB, Korsmeyer SJ, Flavell RA, Schmidt RE, Roth KA: Chloroquine-induced neuronal cell death is p53 and Bel-2 family-dependent but caspase-independent. J Neuropathol Exp Neurol 60: 937-945, 2001

    PubMed  Google Scholar 

  11. IARC: IARC monograph on the evaluation of carcinogenic risks to humans in: Chromium, nickel and welding. WHO, Lyon, France, 49: 49-256, 1990

    Google Scholar 

  12. Connett PH, Wetterhahn KE: Metabolism of the carcinogen chromate by cellular constituents. Struct Bonding 54: 93-124, 1983

    Google Scholar 

  13. Costa M: Toxicity and carcinogenicity of Cr(VI) in animal models and humans. Crit Rev Toxicol 27: 431-442, 1997

    PubMed  Google Scholar 

  14. Liu KJ, Shi X: In vivo reduction of chromium(VI) and its related free radical generation. Mol Cell Biochem 222: 41-47, 2001

    Article  PubMed  Google Scholar 

  15. Ding M, Shi X: Molecular mechanisms of Cr(VI)-induced carcinogenesis. Mol Cell Biochem 234/235: 293-300, 2002

    Article  Google Scholar 

  16. Vasant C, Balamurugan K, Rajaram R, Ramasami T: Apoptosis of lymphocytes in the presence of Cr(V) complexes: Role in Cr(VI) induced toxicity. Biochem Biophys Res Commun 285: 1354-1360, 2001

    Article  PubMed  Google Scholar 

  17. Zhitkovich A, Voitkun V, Costa M: Formation of the amino acid-DNA complexes by hexavalent and trivalent chromium in vitro: Importance of trivalent chromium and the phosphate group. Biochemistry 35: 7275-7282, 1996

    Article  PubMed  Google Scholar 

  18. Tsou TC, Lin R, Yang J: Mutational spectrum induced by chromium(III) in shuttle vectors replicated in human cells: Relationship to Cr(III)-DNA interactions. Chem Res Toxicol 10: 962-970, 1997

    Article  PubMed  Google Scholar 

  19. Singh J, Snow ET: Chromium(III) decreases the fidelity of human DNA polymerase beta. Biochemistry 37: 9371-9378, 1998

    Article  PubMed  Google Scholar 

  20. Voitkun V, Zhitkovich A, Costa M: Cr(III)-mediated crosslinks of glutathione or amino acids to the DNA phosphate backbone are mutagenic in human cells. Nucleic Acids Res 26: 2024-2030, 1998

    Article  PubMed  Google Scholar 

  21. Vincent JB: The bioinorganic chemistry of chromium. Polyhedron 20: 1-26, 2001

    Article  Google Scholar 

  22. Stearns DM, Belbruno JJ, Wetterhahn KE: A prediction of chromium(III) accumulation in humans from chromium dietary supplements. FASEB J 9: 1650-1657, 1995

    PubMed  Google Scholar 

  23. Speetjens JK, Collins JA, Vincent JB, Woski SA: The nutritional supplement chromium(III)-tris(picolinate) cleaves DNA. Chem Res Toxicol 12: 483-487, 1999

    Article  PubMed  Google Scholar 

  24. Stearns DM, Silveria SM, Wolf KK, Luke AM: Chromium(III) tris-(picolinate) is mutagenic at the hypoxanthine(guanine) phosphoribosyltransferase locus in Chinese hamster ovary cells. Mutat Res 513: 135-142, 2002

    PubMed  Google Scholar 

  25. Rajaram R, Nair BU, Ramasami T: Chromium(III)-induced abnormalities in human lymphocyte cell proliferation: Evidence for apoptosis. Biochem Biophys Res Commun 210: 434-440, 1995

    Article  PubMed  Google Scholar 

  26. Nair BU, Kanthimathi M, Chandra Raj K, Ramasami T: Approaches to the aqueous chemistry of chromium(IV) and chromium(V) in macrocyclic and Schiff base complexes. Proc Indian Acad Sci (Chem Sci) 106: 681-689, 1994

    Google Scholar 

  27. Dillon CT, Lay PA, Bonin AM, Cholewa M, Legge GJ: Permeability, cytotoxicity, and genotoxicity of Cr(III) complexes and some Cr(V) analogues in V79 Chinese hamster lung cells. Chem Res Toxicol 13: 742-748, 2000

    Article  PubMed  Google Scholar 

  28. Dillon CT, Lay PA, Bonin AM, Dixon NE, Sulfab Y: DNA interactions and bacterial mutagenicity of some Cr(III) complexes and their Cr(V) analogues: Evidence for Cr(V) intermediates in the genotoxicity of Cr(III). Aust J Chem 53: 411-424, 2000

    Article  Google Scholar 

  29. Sugden KD, Geer RD, Rogers SJ: Oxygen radical mediated DNA damage by redox-active chromium(III) complexes. Biochemistry 31: 11626-11631, 1992

    Article  PubMed  Google Scholar 

  30. Balamurugan K, Vasant C, Rajaram R, Ramasami T: Hydroxopentammine-chromium(III) promoted phosphorylation of bovine serum albumin: Its potential implications in understanding the biotoxicity of chromium. Biochim Biophys Acta 1427: 357-366, 1999

    PubMed  Google Scholar 

  31. Balamurugan K, Rajaram R, Ramasami T, Narayanan S: Cr(III)-induced apoptosis of lymphocytes: Death decision by ROS and Src-family tyrosine Kinases. Free Radic Biol Med 33: 1622-1640, 2002

    Article  PubMed  Google Scholar 

  32. Maguire KNAP, Hallock JS: Preparation and resolution of tris(2,2′-bipyridine) and tris(1,10-phenanthroline) complexes of Cr(III). Inorg Chim Acta 35: L309-L311, 1979

    Article  Google Scholar 

  33. Kanthimathi M, Nair BU, Ramasami T, Shibahara T, Tada T: Preparation, characterization and reactivities of chromium(III) complexes of a homologous series of Schiff-base ligands. Proc Indian Acad Sci (Chem Sci) 109: 235-248, 1997

    Google Scholar 

  34. Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254, 1976

    Article  PubMed  Google Scholar 

  35. Towbin H, Staehelin T, Gordon J: Electrophoretic transfer of proteins from polyacrylamide gel to nitrocellulose sheets: Procedure and some applications. Proc Natl Acad Sci USA 76: 4350-4354, 1979

    PubMed  Google Scholar 

  36. Herrmann M, Lorenz HM, Voll R, Grunke M, Woith W, Kalden JR: A rapid and simple method for the isolation of apoptotic DNA fragments. Nucleic Acids Res 22: 5506-5507, 1994

    PubMed  Google Scholar 

  37. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Richardi C: A rapid simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Meth 139: 271-279, 1991

    Article  PubMed  Google Scholar 

  38. Distelhorst CW: Glucocorticosteroids induce DNA fragmentation in human lymphoid leukemia cells. Blood 72: 1305-1309, 1988

    PubMed  Google Scholar 

  39. Foghi A, Ravandi A, Teerds KJ, Van Der Donk H, Kuksis A, Dorrington J: Fas-induced apoptosis in rat thecal/interstitial cells signals through sphingomyelin-ceramide pathway. Endocrinology 139: 2041-2047, 1998

    Article  PubMed  Google Scholar 

  40. Marini M, Musiani D, Sestili P, Cantoni O: Apoptosis of human lymphocytes in the absence or presence of internucleosomal DNA cleavage. Biochem Biophys Res Commun 229: 910-915, 1996

    Article  PubMed  Google Scholar 

  41. Oberhammer F, Wilson JW, Dive C, Morris ID, Hickman JA, Wakeling AE, Walker PR, Sikorska M: Apoptotic death in epithelial cells: Cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. EMBO J 12: 3679-3684, 1993

    PubMed  Google Scholar 

  42. Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC: Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371: 346-347, 1994

    Article  PubMed  Google Scholar 

  43. Cohen JJ, Duke RC: Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death. J Immunol 132: 38-42, 1984

    PubMed  Google Scholar 

  44. Perry DK, Smyth MJ, Stennicke HR, Salvesen GS, Duriez P, Poirier GG, Hannun YA: Zinc is a potent inhibitor of the apoptotic protease, caspase-3. J Biol Chem 272: 18530-18533, 1997

    Article  PubMed  Google Scholar 

  45. Chen YC, Lin-Shiau SY, Lin JK: Involvement of reactive oxygen species and caspase-3 activation in arsenite-induced apoptosis. J Cell Physiol 177: 324-333, 1998

    Article  PubMed  Google Scholar 

  46. Kim MS, Kim BJ, Woo HN, Kim KW, Kim KB, Kim IK, Jung YK: Cadmium induces caspase-mediated cell death: Suppression by Bcl-2. Toxicology 145: 27-37, 2000

    Article  PubMed  Google Scholar 

  47. Anantharam V, Kitazawa M, Wagner J, Kaul S, Kanthasamy AG: Caspase-3-dependent proteolytic cleavage of protein kinase C delta is essential for oxidative stress-mediated dopaminergic cell death after exposure to ethylcyclopentadienyl manganese tricarbonyl. J Neurosci 22: 1738-1751, 2002

    PubMed  Google Scholar 

  48. Schloomann KE, Gulbins E, Lau SM, Coggeshall KM: Activation of Src-family tyrosine kinases during Fas-induced apoptosis. J Leukoc Biol 60: 546-554, 1996

    PubMed  Google Scholar 

  49. Skov S, Bregenholt S, Claesson MH: MHC class I ligation of human T cells activates the ZAP70 and p56lck tyrosine kinases leads to an alternative phenotype of the TCR/CD3 ς-chain and induces apoptosis. J Immunol 158: 3189-3196, 1997

    PubMed  Google Scholar 

  50. Hofmeister JK, Cooney D, Coggeshall KM: Clustered CD20-induced apoptosis: Src-family kinase, the proximal regulator of tyrosine phosphorylation, calcium influx and caspase 3-dependent apoptosis. Blood Cells Mol Dis 26: 133-143, 2000

    Article  PubMed  Google Scholar 

  51. Ricci JE, Lang V, Luciano F, Belhacene N, Giordanengo V, Michel F, Bismuth G, Auberger P: An absolute requirement for Fyn in T cell receptor-induced caspase activation and apoptosis. FASEB J 15: 1777-1779, 2001

    PubMed  Google Scholar 

  52. Luciano F, Ricci JE, Auberger P: Cleavage of Fyn and Lyn in their Nterminal unique regions during induction of apoptosis: A new mechanism for Src kinase regulation. Oncogene 20: 4935-4941, 2001

    Article  PubMed  Google Scholar 

  53. Kaltschmidt B, Kaltschmidt C, Hofmann TG, Hehner TG, Droge W, Schmitz ML: The pro-or anti-apoptotic function of NF-κB is determined by the nature of the apoptotic stimulus. Eur J Biochem 267: 3828-3835, 2000

    Article  PubMed  Google Scholar 

  54. Slee EA, Adrain C, Martin SJ: Executioner caspase-3,-6 and-7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem 276: 7920-7926, 2001

    Google Scholar 

  55. Vasant C, Rajaram R, Ramasami T: Apoptosis of lymphocytes induced by chromium(VI/V) is through ROS-mediated activation of Src-family kinases and caspase-3. Revised manuscript submitted to Free Radic Biol Med 2003

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balamurugan, K., Rajaram, R. & Ramasami, T. Caspase-3: Its potential involvement in Cr(III)-induced apoptosis of lymphocytes. Mol Cell Biochem 259, 43–51 (2004). https://doi.org/10.1023/B:MCBI.0000021343.54495.8c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCBI.0000021343.54495.8c

Navigation