Skip to main content
Log in

Chitosan as Scaffold Materials: Effects of Molecular Weight and Degree of Deacetylation

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, we investigated in vitro the role of the degree of deacetylation and molecular weight on some biological properties of chitosan films. The influence of different degree of deacetylation and molecular weight of chitosan on the hydrophilicity, degradation, mechanical properties and biocompatibility were evaluated. The results showed that the degree of deacetylation affected the hydrophilicity and biocompatibility of the chitosan films. The molecular weight, on the other hand, affected the rate of degradation and the mechanical properties. Chitosan with higher degree of deacetylation and molecular weight was more suitable for tissue engineering applications. Alginate could be added into chitosan to modify the rigidity and hydrophilicity of chitosan. Higher hydrophilicity, biocompatibility, and elongation were found after modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Domard, K. M. Varum and G. A. F. Roberts, Advances in Chitin Science, Vol. II, Jacques André Press, France, 1988.

    Google Scholar 

  2. S. Hirano, Biotechnol. Annu. Rev., 2, 237 (1996).

    PubMed  Google Scholar 

  3. D. Rodriguez-Sanchez and C. Kienzle-Sterzer, in: Biotechnology of Marine Polysaccharides, R. R. Colwell, E. R. Pariser and A. J. Sinskey, Eds., Hemosphere, Washington, DC, 1984, p. 283.

    Google Scholar 

  4. D. Knorr, in: Biotechnology of Marine Polysaccharides, R.R. Colwell, E. R. Pariser and A. J. Sinskey, Eds., Hemosphere, Washington, DC, 1984, p. 313.

    Google Scholar 

  5. H. Hirano, in: Chitin and Chitosan, G. Skjak-Braek, T. Anthonsen and P. Sandford, Eds., Elsevier, Essex, 1989, p. 37.

    Google Scholar 

  6. R. A. A. Muzzarelli, Carbohydr. Polym., 29, 309 (1996).

    Google Scholar 

  7. N. Errington, S. E. Harding, K. M. Varum and L. Illum, Int. J. Biol. Macromol., 15, 113 (1993).

    PubMed  Google Scholar 

  8. H. S. Blair, J. Guthrie, T. K. Law and P. Turkington, Appl. Polym. Sci., 33, 641 (1987).

    Google Scholar 

  9. K. Tomihata and Y. Ikada, Biomaterials, 18, 567 (1997).

    PubMed  Google Scholar 

  10. Y. Shigemasa, K. Saito, H. Sashiwa and H. Saimoto, Int. J. Biol. Macromol., 16, 43 (1994).

    PubMed  Google Scholar 

  11. N. Hutadilok, T. Mochimasu, H. Hisamori, K. Hayashi, H. Tachibana, S. Ishii and H. Hirano, Carbohydr. Res., 268, 143 (1995).

    Google Scholar 

  12. R. J. Nordtveit, K. M. Varum and O. Smidsrod, Carbohydr. Polym., 29, 163 (1996).

    Google Scholar 

  13. G. Peluso, O. Petillo, M. Ranieri, M. Santin, L. Ambrosio, D. Calabro, B. Avallone and G. Balsamo, Biomaterials, 15, 1215 (1994).

    PubMed  Google Scholar 

  14. W. J. Sime, Alginates, Raunds, Limewood, Northamptonshire N N9 6NG, UK.

  15. K. Smetana, J. Lukas and V. Paleckova, Biomaterials 18, 1009 (1997).

    PubMed  Google Scholar 

  16. E. T. den Braber, J. E. de Ruijter and L. A. Ginsel, Biomaterials, 17, 2037 (1996).

    PubMed  Google Scholar 

  17. R. Singhvi, G. Stephanopoulos and I. C. Daniel, Biotechnol. Bioeng., 43, 764 (1994).

    Google Scholar 

  18. T. Suzuki and Y. Mizushima, J. Ferment. Bioeng., 84, 128 (1997).

    Google Scholar 

  19. N. J. Hallab, K. J. Bundy and K. O'Connor, J. Long-term Defects Med. Impl., 5, 209 (1995).

    Google Scholar 

  20. T. G. Ruardy, H. E. Moorlag and J. M. Schakenraad, J. Colloid. Interf. Sci., 188, 209 (1997).

    Google Scholar 

  21. Y. Ikada, Biomaterials, 15, 725 (1994).

    PubMed  Google Scholar 

  22. S. Tokura and H. Tamura, Macromol. Chem. Symp., 14, 187 (2001).

    Google Scholar 

  23. S. Ohlson, P. O. Larsen and K. Mosbach, Eur. J. Appl. Microbiol. Biotechnol., 7, 103 (1979).

    Google Scholar 

  24. M. L. Huguet, R. J. Neufeld and E. Dellacherie, Proc. Biochem., 31, 347 (1996).

    Google Scholar 

  25. Y. Murata, E. Miyamoto and S. Kawashima, J. Control Release, 38, 101 (1996).

    Google Scholar 

  26. C. Remunan-Lopez, A. Portero, J. L. Vila-Jato and M. J. Alonso, J. Control Release 13 143 (1998).

    Google Scholar 

  27. A. C. M. Wu, Method. Enzymol., 161, 447 (1988).

    Google Scholar 

  28. L. Raymond, F. G. Morin and R. H. Marchesault Carbohydr.Res. 243

    Google Scholar 

  29. W. E. Horton, R. Balakir, P. Precht and C. T. Liang, J. Biol. Chem., 266, 24804 (1991).

    PubMed  Google Scholar 

  30. W. E. J. Horton, J. Cleveland, U. Rapp, G. Nemuth, M. Bolander, K. Doege, Y. Yamada and J. R. Hassell, Exp. Cell Re., 178, 457 (1988).

    Google Scholar 

  31. L. Feng, P. Precht, R. Balakir and W. E. J. Horton, J. Cell Biochem., 71, 302 (1998).

    PubMed  Google Scholar 

  32. K. Rasmussen and K. Ostggard, Water Research, 37, 519 (2003).

    PubMed  Google Scholar 

  33. R. Y. M. Huang, R. Pal and G. Y. Moon, Journal of Membrane Science 167, 275 (2000).

    Google Scholar 

  34. O. Takahashi, K. Takayama, Y. Machida and T. Nagai, Int. J. Pharm., 61, 35 (1990).

    Google Scholar 

  35. J. Gailit and E. Ruoslahti, J. Biol. Chem., 263, 12927 (1988).

    PubMed  Google Scholar 

  36. J. H. Lee and H. B. Lee, Journal of Biomaterials Science - Polymer, 5, 467 (1993).

    Google Scholar 

  37. C. Chatelet, O. Damour and A. Domard, Biomaterials, 22, 261 (2001).

    PubMed  Google Scholar 

  38. R. A. Quirk, B. Kellam, R. N. Bhandari, M. C. Davies, S. J. B. Tendler and K. M. Shakesheff, Biotechnology and Bioengineering, 81(5) 625 (2003).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan-hui Hsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, Sh., Whu, S.W., Tsai, CL. et al. Chitosan as Scaffold Materials: Effects of Molecular Weight and Degree of Deacetylation. Journal of Polymer Research 11, 141–147 (2004). https://doi.org/10.1023/B:JPOL.0000031080.70010.0b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JPOL.0000031080.70010.0b

Navigation