Skip to main content
Log in

Spring Constant Analogy for Estimating Stiffness of a Single Polyethylene Molecule

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The stiffness of a simple planar polymeric chain is modeled using analogies of mechanical springs arranged in series and in parallel assemblies. The stiffness of chemical bonds is resolved into two perpendicular axes defined by the longitudinal and transverse axes in the molecular plane. Using Hooke's definition of spring stiffness, the molecular stiffness of polyethylene is obtained along the longitudinal and transverse directions. This paper demonstrates the use of physical analogies and mathematical approximations for obtaining an analytical form for the stiffness of a simple single-molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.F. Marko and E.D. Siggia, Stretching DNA, Macromolecules 28 (1995) 8759–8770.

    Google Scholar 

  2. S.B. Smith, Y. Cui and C. Bustamante, Overstretching B-DNA: The elastic response of individual double-stranded andsingle-stranded DNA molecules, Science 271 (1996) 795–799.

    PubMed  Google Scholar 

  3. M.D. Wang, H. Yin, R. Landick, J. Gelles and S.M. Block, Stretching DNA with optical tweezers, Biophys. J. 72 (1997) 1335–1346.

    PubMed  Google Scholar 

  4. J.C. Meiners and S.R. Quake, Femtonewton forcespectroscopy of single extended DNA molecules, Phys. Rev. Lett. 84 (2000) 5014–5017.

    PubMed  Google Scholar 

  5. A.D. Mehta, M. Reif, J.A. Spudich, D.A. Smith and R.M. Simmons, Single-molecule biomechanics with optical methods, Science 283 (1999) 1689–1695.

    PubMed  Google Scholar 

  6. A.F. Oberhauser, P.E. Marszalek, H.P. Erickson and J.M. Fernandez, The molecular elasticity of the extracellular matrix proteintenascin, Nature 393 (1998) 181–185.

    PubMed  Google Scholar 

  7. T. Fujii, Y.L. Sun, K.A. An and Z.P. Luo, Mechanical properties of single hyaluronan molecules, J. Biomech. 35 (2002) 527–531.

    PubMed  Google Scholar 

  8. R.H. Boyd and P.V.K. Pant, Simulation of glassy polyethylene starting from the equilibrated liquid, Macromolecules 24 (1991) 4078–4083.

    Google Scholar 

  9. Z. Sun, R.J. Morgan and D.N. Lewis, Calculation of crystalline modulus of syndiotactic polystyrene using molecular modeling, Polymer 33 (1992) 725–727.

    Google Scholar 

  10. Y. Jin and R.H. Boyd, Subglass chain dynamics andrelaxation in polyethylene: A molecular dynamics simulation study, J.Chem. Phys. 108 (1998) 9912–9923.

    Google Scholar 

  11. K. Fukui, B.G. Sumpter, M.D. Barnes and D.W. Noid, Molecular dynamics studies of the structure and properties of polymer nano-particles, Comput. Theor. Polym. Sci. 9 (1999) 245–254.

    Google Scholar 

  12. D.W. Noid, R.E. Tuzun and B.G. Sumpter, On the importance of quantum mechanics for nanotechnology, Nanotechnology 8 (1997) 119–125.

    Google Scholar 

  13. S.L. Mayo, B.D. Olafson and W.A GoddardIII, DREIDING: A generic force field for molecular simulations, J. Phys. Chem. 94 (1990) 8897–8909.

    Google Scholar 

  14. K. Tashiro, Molecular dynamics calculation to clarify the relationship between structure and mechanical properties of polymer crystals: the case of orthorhombic polyethylene, Comput. Theor. Polym. Sci. 11 (2001) 357–374.

    Google Scholar 

  15. D.W. Noid and G.A. Pfeffer, Short time molecular dynamics simulations: stressed polyethylene results, J. Polym. Sci. B Polym. Phys. 27 (1989) 2321–2335.

    Google Scholar 

  16. D.W. Noid, B.G. Sumpter and B. Wunderlich, Molecular dynamics simulation of twist motion in polyethylene, Macromolecules 24 (1991) 4148–4151.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, TC. Spring Constant Analogy for Estimating Stiffness of a Single Polyethylene Molecule. Journal of Mathematical Chemistry 34, 151–161 (2003). https://doi.org/10.1023/B:JOMC.0000004065.34221.47

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOMC.0000004065.34221.47

Navigation