Skip to main content
Log in

Time-Resolved Fluorescent Imaging of Glucose

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A method for the fluorescent imaging of glucose is described that is based on the detection of enzymatically produced hydrogen peroxide, using the europium(III) tetracycline complex as the fluorescent probe incorporated into a hydrophilic polymer layer. Coadsorption of glucose oxidase (GOx) makes these sensor layers respond to the hydrogen peroxide produced by the GOx-assisted oxidation of glucose. The hydrogel layers are integrated into a 96-microwell plate for a parallel and simultaneous detection of various samples. Glucose is visualized by means of time resolved luminescence lifetime imaging. Unlike in previous methods, the determination of H2O2 does not require the addition of peroxidase or a catalyst to form a fluorescent product. The lifetime-based images obtained are compared with conventional fluorescence intensity-based methods with respect to sensitivity and the dynamic range of the sensor layer. The main advantages provided by this sensing scheme for H2O2 include reversibility, applicability at neutral pH, and the straightforwardness of the transducer system and the imaging device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

EFERENCES

  1. E. A. Hall (1990). Biosensors, Open University Press, Buckingham, pp. 253–282.

    Google Scholar 

  2. K. Habermüller, A. Ramanavicius, V. Laurinavicius, and W. Schuhmann (2000). An oxygen-insensitive reagentless glucose biosensor based on osmium-complex modified polypyrrole. Elec-troanalysis 12, 1383–1389.

    Google Scholar 

  3. D. B. Papkovsky (1995). New oxygen sensors and their application to biosensing. Sens. Actuat. B 29, 213–218.

    Google Scholar 

  4. J. Kulys (1999). The carbon paste electrode encrusted with a mi-croreactor as glucose biosensor. Biosens. Bioelectron. 14, 473–479.

    Google Scholar 

  5. A. Poscia, M. Mascini, D. Moscone, M. Luzzana, G. Caramenti, P. Cremonesi, F. Valgimigli, C. Bongiovanni, and M. Varalli (2003). A microdialysis technique for continuous subcutaneous glucose mon-itoring in diabetic patients. Biosens. Bioelectron. 18, 891–898.

    Google Scholar 

  6. F. Ricci, C. Goncalves, A. Amine, L. Gorton, G. Palleschi, and D. Moscone (2003). Electroanalytical study of prussian blue modified glassy carbon paste electrodes. Electroanalysis 15, 1204–1211.

    Google Scholar 

  7. S. F. White, A. P. F. Turner, U. Biltewski, J. Bradley, and R. D. Schmid (1995). On-line monitoring of glucose, glutamate and glu-tamine during mammalian cell cultivations. Biosens. Bioelectron. 10, 543–551.

    Google Scholar 

  8. R. Narayanaswamy and F. Sevilla (1988). Anal. Lett. 21, 1165–1175.

    Google Scholar 

  9. B. P. H. Schaffar and O. S. Wolfbeis (1990). A fast responding fibre optic glucose biosensor based on an oxygen optrode. Biosens. Bioelectron. 5, 137–148.

    Google Scholar 

  10. O. S. Wolfbeis, I. Oehme, N. Papkovskaya, and I. Klimant (2000). Sol-gel based glucose biosensors employing optical oxygen trans-ducers, and a method for compensating for variable oxygen back-ground. Biosens. Bioelectron. 15,69–76.

    Google Scholar 

  11. H. M. Heise (2000) in R. A. Meyers (Ed.), Encyclopedia of Analytical Chemistry, Wiley, New York, pp. 56–83.

    Google Scholar 

  12. K. Kellner, G. Liebsch, I. Klimant, O. S. Wolfbeis, T. Blunk, M. B. Schulz,and A. Göpferich (2002). Determination of oxygen gradients in engineered tissue using a fluorescent sensor. Biotechnol. Bioeng. 80,73–83.

    PubMed  Google Scholar 

  13. G. Liebsch, I. Klimant, B. Frank, G. Holst, and O. S. Wolfbeis (2000). Luminescence lifetime imaging of oxygen, pH, and carbon dioxide distribztion using optical sensors. Appl. Spectrosc. 54, 548–559.

    Google Scholar 

  14. P. Babilas, V. Schacht, G. Liebsch, O. S. Wolfbeis, M. Landthaler, M. Szeimies, and C. Abels (2003). Effect of light fractionation and different fluence rates on photodynamic therapy with 5-aminolaevulinic acid in vivo. Br. J. Cancer 88, 1462–1469.

    Google Scholar 

  15. A. Shiino, M. Haida, and B. Beauvoit, and B. Chance (1999). Three-dimensional redox image of the normal gerbil brain. Neu-roscience 91, 1581–1585.

    Google Scholar 

  16. R. E. Anderson and F. B. Meyer (2002). In C. K. Sen and L. Packer (Eds.), Methods in Enzymology, Vol. 352, Academic Press, San Diego, pp. 482–494.

    Google Scholar 

  17. M. Hashimoto, Y. Takeda, T. Sato, H. Kawahara, O. Nagano, and M. Hirakawa (2000). Dynamic changes of NADH fluorescence im-ages and NADH content during spreading depression in the cerebral cortex of gerbils. Brain Res. 872, 294–300.

    Google Scholar 

  18. A. V. Kuznetsov, O. Mayboroda, D. Kunz, K. Winkler, W. Schubert, and W. S. Kunz (1998). Functional imaging of mitochon-dria in saponin-permeabilized mice muscle fibers. J. Cell Biol. 140, 1091–1099.

    Article  PubMed  Google Scholar 

  19. M. Weinlich and H. Acker (1990). Flavoprotein-fluorescence imag-ing for metabolic studies in multicellular spheroids by means of confocal scanning laser microscopy. J. Microsc. 160, RP1–RP2.

    Google Scholar 

  20. S. Van Stedum and W. King (2002). Basic FISH techniques and troubleshooting. Methods Mol. Biol. 204,51–63.

    PubMed  Google Scholar 

  21. T. Liehr and U. Claussen (2002). Multicolor-FISH approaches for the characterization of human chromosomes in clinical genetics and tumor cytogenetics. Curr. Genom. 3, 213–235.

    Google Scholar 

  22. B. Rautenstrauss and T. Liehr (2002). FISH Technology, Springer-Verlag, Berlin, Germany, 494 pp.

    Google Scholar 

  23. M. Andreeff and D. Pinkel (1999). Introduction to Fluorescence In Situ Hybridization: Principles and Clinical Applications, Wiley-Liss, New York, 455 pp.

    Google Scholar 

  24. G. Liebsch, I. Klimant, C. Krause, and O. S. Wolfbeis (2001). Fluo-rescent imaging of pH with optical sensors using time domain dual lifetime referencing. Anal. Chem. 73, 4354–4363.

    Google Scholar 

  25. G. Liebsch, I. Klimant, and O. S. Wolfbeis, (1999). Cross-reactive metal ion sensor array in a micro titer plate format. Adv. Mat. 11, 1296–1299.

    Article  Google Scholar 

  26. K. M. Hanson, M. J. Behne, N. P. Barry, T. M. Mauro, E. Gratton, and R. M. Clegg (2002). Two-photon fluorescence lifetime imaging of the skin stratum corneum pH gradient. Biophys. J. 83, 1682–1690.

    PubMed  Google Scholar 

  27. P. C. Schneider and R. M. Clegg (1997). Rapid acquisition, analysis, and display of fluorescence lifetime-resolved images for real-time applications. Rev. Sci. Instr. 68, 4107–4119.

    Google Scholar 

  28. M. C. Moreno-Bondi, O. S. Wolfbeis, M. J. P. Leiner, and B. P. H. Schaffar (1990). Oxygen optrode for use in a fiber-optic glucose biosensor. Anal. Chem. 62, 2377–2380.

    PubMed  Google Scholar 

  29. O. S. Wolfbeis, I. Oehme, N. Papkovskaya, and I. Klimant (2000). Sol-gel based glucose biosensors employing optical oxygen trans-ducers, and a method for compensating for variable oxygen back-ground. Biosens. Bioelectron. 15,69–76.

    Google Scholar 

  30. J. S. Schultz, S. Mansouri, and I. J. Goldstein (1982). Affinity sensor: A new technique for developing implantable sensors for glucose and other metabolites. Diabetes Care 5, 245–254.

    Google Scholar 

  31. D. Meadows and J. S. Schultz (1988). Fiber-optic biosensors based on fluorescence energy transfer. Talanta 35, 145–153.

    Article  Google Scholar 

  32. L. Tolosa, H. Szmacinski, G. Rao, and J. R. Lakowicz (1997). Lifetime-based sensing of glucose using energy transfer with a long lifetime donor. Anal. Biochem. 250, 102–108.

    Article  Google Scholar 

  33. N. DiCesare and J. R. Lakowicz (2001). Evaluation of two syn-thetic glucose probes for fluorescence-lifetime-based sensing. Anal. Biochem . 294, 154–160.

    Article  Google Scholar 

  34. L. L. E. Salins, R. A. Ware, C. M. Ensor, and S. Daunert (2001). A novel reagentless sensing system for measuring glucose based on the galactose/glucose-binding protein. Anal. Biochem. 294,19–26.

    Article  Google Scholar 

  35. O. S. Wolfbeis, A. Dürkop, M. Wu, and Z. Lin, (2002). A europium-ion-based luminescent sensing probe for hydrogen peroxide. Angew. Chem. 114, 4681–4684; Angew. Chem. Int. Ed. 41, 4495-4498.

    Article  Google Scholar 

  36. O. S. Wolfbeis, M. Schäferling, and A. Dürkop, (2003). Reversible optical sensor membrane for hydrogen peroxide using an immobi-lized fluorescent probe, and its application to a glucose biosensor. Microchim. Acta 143, 221–227

    Google Scholar 

  37. M. Schäferling, M. Wu, J. Enderlein, H. Bauer, and O. S. Wolfbeis (2003). Time-resolved luminescence imaging of hydrogen peroxide using sensor membranes in a microwell format. Appl. Spectrosc. 57, 1386–1392.

    Google Scholar 

  38. P. Hartmann and W. Ziegler (1996). Lifetime imaging of luminescent oxygen sensors based on all-solid-state technology. Anal. Chem. 68, 4512–4514.

    Article  Google Scholar 

  39. P. Hartmann, W. Ziegler, G. Holst, and D.W. Lübbers (1997). Oxygen flux fluorescence lifetime imaging. Sens. Actuat. B 38, 110–115.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schäferling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schäferling, M., Wu, M. & Wolfbeis, O.S. Time-Resolved Fluorescent Imaging of Glucose. Journal of Fluorescence 14, 561–568 (2004). https://doi.org/10.1023/B:JOFL.0000039343.02843.12

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOFL.0000039343.02843.12

Navigation