Skip to main content
Log in

Heat Stress Induced Redistribution of Fluorescent Quantum Dots in Breast Tumor Cells

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The probing of living cells in different colors over extended periods of time can be used to see the complicated processes that take place during carcinogenesis or heat stress, for example. Since most therapeutic laser tissue interactions are based on thermal effects a detailed characterization of thermal tissue damages in the cellular and sub-cellular levels is important. In order to study such microdosimetry laser-induced fluorescences of Quantum dots provide a suitable approach. Streptavidin conjugated Qdot™ 605 (Quantum Dot Corp., USA) were used in combination with the concanavalin A-biotin labeling system (Molecular Probes, NL) to observe membrane associated thermal lesions. Fluorescent Qdot conjugates are a promising alternative to organic dyes. The extinction coefficient of Qdot™ 605 streptavidin conjugate is 650,000 M−1 cm−1 at 600 nm. Red fluorescent Qdots™ 605 were selected because autofluorescence of cells in the red spectral range is not relevant. Fluorescence detection was performed with a confocal laser scan microscope LSM410 (Carl Zeiss, Germany). Breast cancer cells were used in the thermal stressing experiments performed at 40°C, 42°C, 45°C, 50°C or 56°C for 30 min, each. In this methodical approach Qdot mediated labeling of heat stressed cells were demonstrated to show alterations of plasma membrane organizations and integrities, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Minet, J. Beuthan, K. Licha, and C. Mahnke (2002). in R. Kraayenhof, A. J. W. G. Visser, H. C. Gerritsen (Ed.), Fluorescence Spectroscopy, Imaging and Probes (Springer Series on Fluorescence Methods and Applications), Vol. 2, Springer, New York, pp. 349-360.

    Google Scholar 

  2. O. Minet, K. Dörschel, and G. Mueller (2004). Lasers in biology and medicine. in Landolt-Börnstein (Ed.), Laser Applications, Vol. VIII/1c, Springer, New York, pp. 279-310.

    Google Scholar 

  3. D. L. Vaux (2002). Apoptosis and toxicology—what relevance? Toxicology 181–182, 3-7.

    Google Scholar 

  4. S. Y. Proskuryakov, A. G. Konoplyannikov, and V. L. Gabai (2003). Exp. Cell Res. 283, 1-16.

    Google Scholar 

  5. S. L. Rutherford (2003). Nat. Rev. Genet. 4, 263-274.

    Google Scholar 

  6. F. M. Ritossa (1962). Drosophila. Experimenta 18, 571-573.

    Google Scholar 

  7. F. Macouillard-Poulletier de Gannes, N. Leducq, P. Diolez, F. Belloc, M. Merle, P. Canioni, and P.-J. Voisin (2000). Neurochem. Int. 36, 233-241.

    Google Scholar 

  8. A. Yagui-Beltran, A. L. Graig, L. Lawrie, D. Thompson, S. Pospisilova, D. Johnston, N. Kernohan, D. Hopwood, J. F. Dillon, and T. R. Hupp (2001). Eur. J. Biochem. 268, 5343-5355.

    Google Scholar 

  9. J. Jakubowicz-Gil, J. Rzymowska, and A. Gawron (2002). Quercetin, apoptosis, heat shock. Biochem. Pharmacol. 64, 1591-1595.

    Google Scholar 

  10. http://www.ntar3.sr.unh.edu/download/191/paper191.doc

  11. S. Jacques, C. Newman, and X. Y. He (1991). Am. Soc. Mech. Eng. 189, 71-73.

    Google Scholar 

  12. B. Gewiese, J. Beuthan, F. Fobbe, D. Stiller, G. Müller, J. Böse-Landgraf, K. J. Wolf, and M. Deimling (1994). Invest. Radiol. 29, 345-351.

    Google Scholar 

  13. S. H. Diaz, J. S. Nelson, and B. J. F. Wong (2002). Phys. Med. Biol. 48, 19-29.

    Google Scholar 

  14. A. J. Welch and M. J. C. van Germert (1995). Optical-Thermal Response of Laser-Irradiated Tissue, Plenum, New York.

    Google Scholar 

  15. M. P. Oksvold, E. Skarpen, J. Widerberg, and H. S. Huitfeldt (2002). J. Histochem. Cytochem. 50, 289-303.

    Google Scholar 

  16. D. J. Stephens and V. J. Allen (2003). Science 300, 82-86.

    Google Scholar 

  17. http://www.probes.com/handbook

  18. http://www.qdots.com

  19. W. C. W. Chan, D. J. Maxwell, X. Gao, R. E. Bailey, M. Han, and S. Nie (2002). Curr. Opin. Biotechnol. 13, 40-46.

    Google Scholar 

  20. B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber (2002). Science 298, 1759-1762.

    Google Scholar 

  21. J. K. Jaiswal, H. Mattoussi, J. M. Mauro, and S. M. Simon (2003). Nat. Biotechnol. 21, 47-51.

    Google Scholar 

  22. E. R. Goldman, G. P. Anderson, P. T. Tran, H. Matoussi, P. T. Charles, and J. M. Mauro (2002). Anal. Chem. 74, 841-847.

    Google Scholar 

  23. M. E. Akerman, W. C. W. Chan, P. Laakkonen, S. N. Bhatia, and E. Ruoslahti (2002). Proc. Natl. Acad. Sci. 99, 12617-12621.

    Google Scholar 

  24. X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez (2003). Nat. Biotechnol. 21, 41-46.

    Google Scholar 

  25. P. S. Stayton, K. E. Nelson, T. C. McDevitt, V. Bulmus, T. Shimooji, Z. Ding, and A. S. Hoffman (1999). Biomol. Eng. 16, 93-99.

    Google Scholar 

  26. J. C. Chato and R. C. Lee (1998). Ann. N. Y. Acad. Sci. 858, 1-20.

    Google Scholar 

  27. H. Rüdiger and H.-J. Gabius (2001). Glycoconj. J. 18, 589-613.

    Google Scholar 

  28. http://www.biosource.com/content/literatureContent/PDFs/alamar-bluebooklet.pdf

  29. H. Xu, M. Y. Sha, E. Y. Wong, J. Uphoff, Y. Xu, J. A. Treadway, A. Truong, E. O'Brien, S. Asquith, M. Stubbins, N. K. Spurr, E. H. Lai, and W. Mahoney (2003). Nucleic Acids Res. 31, No.8 e43.

    Google Scholar 

  30. K. Ikeda, K. Matsuda, H. Saito, K. Nishi, and T. Saiki (2001). J. Microsc. 202, 209-211.

    Google Scholar 

  31. N. Narita, I. Noda, T. Ohtsubo, S. Fujeda, M. Tokuriki, T. Saito, and H. Saito (2002). Int. J. Radiat. Oncol. Biol. Phys. 53, 190-196.

    Google Scholar 

  32. X. Zhang, Y. Li, Q. Huang, H. Wang, B. Yan, M. W. Dewhirst, and C. Y. Li (2003). Clin. Cancer Res. 9, 1155-1160.

    Google Scholar 

  33. E. Zeise and L. Rensing (2002). Int. J. Hyperthermia 18, 344-360.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Minet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minet, O., Dressler, C. & Beuthan, J. Heat Stress Induced Redistribution of Fluorescent Quantum Dots in Breast Tumor Cells. Journal of Fluorescence 14, 241–247 (2004). https://doi.org/10.1023/B:JOFL.0000024555.60815.21

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOFL.0000024555.60815.21

Navigation