Skip to main content
Log in

Gas Phase Ion Chemistry of Transition Metal Clusters: Production, Reactivity, and Catalysis

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

This review focuses on the use of mass spectrometry to examine the gas phase ion chemistry of metal clusters. Ways of forming gas phase clusters are briefly overviewed and then the gas phase chemistry of silver clusters is discussed to illustrate the concepts of “magic numbers” and how reactivity can be size dependent. The chemistry of other bare and ligated metal clusters is examined, including mixed metal dimer ions as models for microalloys. Metal clusters that catalyze gas phase chemical reactions such as the oxidation of CO and organic substrates are reviewed. Finally the interface between nanotechnology and mass spectrometry is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. B. Armentrout (2003). Eur. J. Mass Spectrom. 9, 531.

    Google Scholar 

  2. F. Zaera (2002). J. Phys. Chem. B. 106, 4043.

    Google Scholar 

  3. T. Waters; R. A. J. O 'Hair; A. G. Wedd (2000). Chem.Comm., 225; (b)T. Waters, R. A. J. O 'Hair, and A. G. Wedd (2003). J. Am. Chem. Soc. 125, 3384.

    Google Scholar 

  4. T. Waters, R. A. J. O 'Hair, and A. G. Wedd (2003). Int. J. Mass Spectrom. 228, 599.

    Google Scholar 

  5. L. S. Wang and H. Wu (1998). Adv. Metal Semicond. Clust. 4, 299.

    Google Scholar 

  6. M. Valden, X. Lai, D. W. Goodman (1998). Science, 281 (5383):1647; (b)M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, B. Delmon (1993). J. Catal. 144, 175; (c)M. Haruta (1997). Catalysis Today 36, 153; (d)G. C. Bond; D. T. Thompson (1999). Catal. Rev.-Sci. Eng. 41, 319.

    PubMed  Google Scholar 

  7. (a) W. T. Wallace and R. L. Whetten (2002). J. Am. Chem. Soc. 124, 7499; (b)W. T. Wallace and R. L. Whetten (2000). J. Phys. Chem. B. 104, 10964.

  8. (a) G. A. Ozin and S. A. Mitchell (1983). Angew. Chem. Int. Ed. Engl. 22, 674; (b)M. B. Knickelbein (1999). Ann. Rev. Phys. Chem. 50, 79.

    Google Scholar 

  9. B. F. G. Johnson and J. S. McIndoe (2000). Coord. Chem. Rev. 200, 901; (b)T. J. Kemp (1993). Coord. Chem. Rev. 125, 333; (c)M. I. Bruce and M. J. Liddell (1987). Appl. Organomet. Chem. 1, 191.

    Google Scholar 

  10. D. E. Clemmer and M. F. Jarrold (1997). J. Mass Spectrom. 32, 577; (b)M. Maier-Borst, P. Loffler, J. Petry, and D. Kreisle (1997). Zeit. Phys. D-Atoms Mol. and Clusters 40, 476.

    Google Scholar 

  11. X. Li, H. F. Zhang, L. S. Wang, A. E. Kuznetsov, N. A. Cannon and A. I. Boldyrev (2001). Angew. Chem.-Int. Ed. 40, 1867. (b)A. E. Kuznetsov, A. I. Boldyrev, X. Li, and L. S. Wang (2001). J. Am. Chem. Soc. 123, 8825. (c)A. E. Kuznetsov, K. A. Birch, A. I. Boldyrev, X. Li, H. J. Zhai, and L. S. Wang (2003). Science 300, 622.

    Google Scholar 

  12. S. Kruckeberg, D. Schooss, M. Maier-Borst, and J. H. Parks (2000). Phys. Rev. Lett. 85, 4494.

    PubMed  Google Scholar 

  13. A. Fielicke, R. Mitric, G. Meijer, V. Bonacic-Koutecky, and G. Von Helden (2003). J. Am. Chem. Soc. 125, 15716. (b)A. Fielicke, G. Meijer, and G. Von Helden (2003). J. Am. Chem. Soc. 125, 3659.

    PubMed  Google Scholar 

  14. S. W. Buckner and B. S. Freiser, in D. H. Russell (ed. ), Gas Phase Inorganic Chemistry (Plenum Press, New York, 1989), pp. 279–322.

    Google Scholar 

  15. I. Dance (1998). Chem. Commun. 5, 523; (b)P. B. Armentrout and J. L. Beauchamp (1989). Acc. Chem. Res. 22, 315; (c)B. S. Freiser (1994). Acc. Chem. Res. 27, 353; (d)L. M. Roth; B. S. Freiser (1991). Mass Spectrom Rev. 10, 303; (e)K. Eller; H. Schwarz (1991). Chem. Rev. 91, 1121; (f)J. A. M. Simoes and J. L. Beauchamp (1990). Chem. Rev. 90, 629; (g)D. C. Parent and S. L. Anderson (1992). Chem. Rev. 92, 1541; (h)P. B. Armentrout (2001). Ann. Rev. Phys. Chem. 52, 423; (i)K. J. Fisher (2001). Prog. Inorg. Chem. 50, 343; (j)B. S. Freiser (1996). J Mass Spectrom. 31, 703; (k)D. A. Plattner (2001) Int. J. Mass Spectrom. 207, 125.

    Google Scholar 

  16. A. Terasaki, in T. Kondow and F. Mafune (ed. ), Progress and Theoretical Studies of Clusters (World Scientific), pp. 121–155.

  17. M. L. Gross and R. Caprioli (eds. In chief) The Encyclopaedia of Mass Spectrometry Volume 1:Theory and Ion Chemistry (Armentrout, P. Ed. ), (Elsevier, Amsterdam, 2003).

    Google Scholar 

  18. T. G. Dietz, M. A. Duncan, D. E. Powers, and R. E. Smalley (1981). J. Chem. Phys., 74, 6511.

    Google Scholar 

  19. V. E. Bondybey and J. H. English (1982). J. Chem. Phys. 76, 2165.

    Google Scholar 

  20. J. S. McIndoe (2003). Trans. Metal Chem. 28, 122.

    Google Scholar 

  21. D. B. Jacobson and B. S. Freiser (1984). J. Am. Chem. Soc. 106, 4623.

    Google Scholar 

  22. C. J. McNeal, J. M. Hughes, G. J. Lewis, and L. F. Dahl (1991). J. Am. Chem. Soc. 113, 372.

    Google Scholar 

  23. M. J. Dale, P. J. Dyson, B. F. G. Johnson, P. R. R. Langridge-Smith, and H. T. Yates (1996). J. Chem. Soc. Dalton Trans. 5, 771.

    Google Scholar 

  24. S. Keki, L. S. Szilagyi, J. Torok, G. Deak, and M. Zsuga (2003). J. Phys. Chem. B. 107, 4818.

    Google Scholar 

  25. U. Hild, G. Dietrich, S. Kruckeberg, M. Lindinger, K. Lutzenkirchen, L. Schweikhard, C. Walther, and J. Ziegler (1998). Phys rev A, 57, 2786; (b)S. K. Loh, D. A. Hales, and P. B. Armentrout (1986). Chem. Phys. Lett. 129, 527; (c)I. G. Dance, K. J. Fisher, and G. D. Willett (1997). J. Chem. Soc., Dalton Trans. 15, 2557; (d)K. Koszinowski, D. Schroder, and H. Schwarz (2003). J. Am. Chem. Soc. 125, 3676; (e)P. Milani and W. A. Deheer (1990). Rev. Sci. Instrum., 61, 1835; (f)A. Dinca, T. P. Davis, K. J. Fisher, D. R. Smith, and G. D. Willett (1999). Int. J. Mass Spectrom. 182/183, 73; (g)J. El Nakat, K. J. Fisher, I. G. Dance, and G. D. Willett (1993). Inorg Chem. 32, 1931; (h)J. L. Gole, R. Woodward, J. S. Hayden, and D. A. Dixon (1985). J. Phys. Chem. 89, 4905; (i)T. G. Dietz, M. A. Duncan, D. E. Powers, and R. E. Smalley (1981). J. Chem. Phys. 74, 6511; (j)H. Rashidzadeh and B. Guo (1999). Chem. Phys. Lett. 310, 466; (k)C. Berg, T. Schindler, M. Kantlehner, G. Niedner-Schatteburg, and V. E. Bondybey (2000). Chem. Phys. 262, 143.

    Google Scholar 

  26. D.L. Vollmer, M.L. Gross, R.J. Waugh, M.I. Bruce, and J.H. Bowie (1994). Organo-metallics , 13, 3564; (b) D. H. Russell, D. Anderson Freedeen, and R. E. Tecklenburg,in D.H. Russell (ed.), Gas Phase Inorganic Chemistry (Plenum Press, New York, 1989), pp. 115–135.

    Google Scholar 

  27. I. Katakuse, T. Ichihara, Y. Fujita, T. Matsuo, T. Sakurai, and H. Matsuda (1985). Int. J. M. S. and ion Proc. 67, 229; (b)R. B. Freas and J. E. Campana (1985). J. Am. Chem. Soc. 107, 6202; (c)P. Sharpe and C. J. Cassady (1992). Chem. Phys. Lett. 191, 111.

    Google Scholar 

  28. C. P. G. Butcher, P. J. Dyson, B. F. G. Johnson, T. Khimyak, and J. S. McIndoe (2003). Chem. Eur. J. 9, 944; (b)W. Henderson and J. S. Nicholson (1995). J. Chem. Soc, Chem. Comm. 2531; (c)C. P. G. Butcher, A. Dinca, P. Dyson, B. F. G. Johnson, P. R. R. Langridge-Smith, and S. J. McIndoe (2003). Angew Chem. Int. Ed. 42, 5752; (d)D. G. Leopold, J. Ho, and W. C. Lineberger (1987). J. Phys. Chem. 86, 1715; (e)K. M. Erwin (2001). Int. Rev. Phys. Chem. 20, 127; (f)W. Schulze, F. Frank, K,-P. Charle, and B. Tesche (1984). Ber. Bunsenges Phys. Chem. 88, 263; (g)M. Schmidt, Ph. Cahuzac, C. Brechignac, and H-P. Cheng (2003). J. Chem. Phys. 118, 10956; (h)P. J. Dyson, A. K. Hearley, B. F. G. Johnson, J. S. McIndoe, and P. R. R. Langridge-Smith (2001). J. Cluster Sci. 12, 273.

    Google Scholar 

  29. Katakuse, T. Ichihara, Y. Fujita, T. Matsuo, T. Sakurai, and H. Matsuda (1986). Int. J. Mass Spectrom. Proc. 74, 33; (b)A. Selinger, P. Schnabel, W. Wiese, and M. P. Irion (1990). Ber Bunsenges. Phys. Chem. 94, 1278; (c)D. L. Feldheim and C. A. Foss Jr. (ed. ), Metal nanoparticles:Synthesis, Charaterization and Applications (Marcel Dekker Inc, 2002).

    Google Scholar 

  30. W. D. Knight, K. Clemenger, A. W. de Heer, A. W. Saunders, M. Y. Chou, and M. L. Cohen (1984). Phys. Rev. Lett. 52, 2141.

    Google Scholar 

  31. NIST website (http://webbook. nist. gov/).

  32. (a) V. A. Spasov, T. H. Lee, J. P. Maberry, K. M. Ervin (1999). J. Chem. Phys. 110, 5208; (b)Y. Shi, V. A. Spasov, and K. M. Ervin (1999). J. Chem. Phys. 111, 938.

    Google Scholar 

  33. M. Vogel, A. Herlert, and L. Schweikhard (2003). J. Am. Soc. Mass Spectrom. 14, 614.

    PubMed  Google Scholar 

  34. B. Chen, A. W. Castleman, C. Ashman, and S. N. Khanna (2002). Int. J. Mass Spectrom. 220, 171.

    Google Scholar 

  35. T. H. Lee and K. M. Ervin (1994). J. Phys. Chem. 98, 10023.

    Google Scholar 

  36. Y. D. Kim and G. Gantefor (2004). Chem. Phys. Lett. 383, 80.

    Google Scholar 

  37. L. D. Socaciu, J. Hagen, J. Le Roux, D. Popolan, T. M. Bernhardt, L. Woste, and S. Vajda (2004). J. Chem. Phys. 120, 2078.

    PubMed  Google Scholar 

  38. M. Schmidt, A. Masson, and C. Brechignac (2003). Phys. Rev. Lett. 91, 243401.

    PubMed  Google Scholar 

  39. W. Buckner, J. R. Gord, and B. S. Freiser (1988). J. Chem. Phys. 88, 3678; (b) Sharpe, J. M. Campbell, and C. J. Cassady (1994). Organometallics 13, 3077; (c)M. A. Cheeseman and J. R. Eyler (1992). J. Phys. Chem. 96, 1082; (d)M. P. Irion, P. Schnabel, and A. Selinger (1990). Ber. Bunsenges. Phys. Chem. 94, 1291.

    Google Scholar 

  40. C. K. Fagerquist, D. K. Sensharma, and M. A. El-Sayed (1991). J. Phys. Chem. 95, 9169; (b)C. K. Fagerquist, D. K. Sensharma, and M. A. El-Sayed (1991). J. Phys. Chem. 95, 9176; (c)C. K. Fagerquist, D. K. Sensharma, T. S. Ahmadi, and M. A. El-Sayed (1993). J. Phys. Chem. 97, 6598; (d)C. K. Fagerquist, D. K. Sensharma, M. A. El-Sayed, A. Rubio, and M. L. Cohen (1995). J. Phys. Chem. 99, 7723.

    Google Scholar 

  41. Jerger, D. Kreisle, and E. Recknagel (1993). Z. Phys. D. 26, 181.

    Google Scholar 

  42. M. L 'Hermite, F. Rabilloud, P. Labastie, and F. Spiegelman (2001). Eur. Phys. J. D 16, 77; (b)J.–M. L, F. Rabilloud, L. Marcou, and P. Labastie (2001). Eur. Phys. J. D 14, 323.

    Google Scholar 

  43. L. M. Roth, B. S. Freiser, C. W. Uschlicher, H. Partridge, and S. R. Langhoffl (1991). J. Am. Chem. Soc. 113(9), 3274; (b)Y. Q. Huang and B. S. Freiser (1988). J. Am. Chem. Soc. 110 (2), 387; (c)L. M. Lech, J. R. Gord, B. S. Freiser (1989). J. Am. Chem. Soc. 111 (23), 8588; (d)J. Marcalo and A. P. de Matos (2002). J. Organometallic Chem. SI 647 (1–2), 216; (e)M. D. Vieira; J. Marcalo, and A. P. de Matos (2001). J. Organomet. Chem. 632, 126; (f)C. Kronseder, T. Schindler, C. Berg, R. Fischer, G. Niednerschatteburg, and V. E. Bondebey (1994). J. Organometallic Chem. 475, 247; (g)K. Koszinowski, D. Schroder, and H. Schwarz (2004). Angew. Chem. Int. Ed. Engl. 43, 121; (h)K. Koszinowski, D. Schroder, and H. Schwarz (2004). Organometallics 23, 1132.

    Google Scholar 

  44. D. P Ridge and W. K. Meckstroth, in D. H. Russell (ed. ), Gas Phase Inorganic Chemistry (Plenum Press, New York, 1989), pp. 93–113.

    Google Scholar 

  45. Y. H. Pan, K. Sohlberg, and D. P. Ridge (1991). J. Am. Chem. Soc. 113, 2406.

    Google Scholar 

  46. J. M. Thomas (1994). Angew. Chem. Int. Ed. 33, 913.

    Google Scholar 

  47. K. Koszinowski, D. Schroder, and H. Schwarz (2003). J. Phys. Chem. A 107, 4999.

    Google Scholar 

  48. R. B. Freas and D. P. Ridge (1984). J. Am. Chem. Soc. 106, 825.

    Google Scholar 

  49. Y. H. Pan and D. P. Ridge (1989). J. Phys. Chem. 93, 3375.

    Google Scholar 

  50. K.A. Zemski, D. R. Justes, and A. W. Castleman (2002). J. Phys. Chem. B 106, 6136

    Google Scholar 

  51. D. Schroder, in M. L. Gross, R. Caprioli (eds. In chief), The Encyclopaedia of Mass Spectrometry Volume 1:Theory and Ion Chemistry (Armentrout, P. Ed. ), (Elsevier, Amsterdam, 2003), 810–818.

    Google Scholar 

  52. O. Gehret and M. P. Irion (1996). Chem. Eur. J. 2, 598; (b)P. Jackson, J. N. Harvey, D. Schroder and H. Schwarz (2001). Int. J. Mass Spectrom. 204, 233.

    Google Scholar 

  53. E. F. Fialko, A. V. Kikhtenko, V. B. Goncharov, and K. I. Zamaraev (1997). J. Phys. Chem. B. 101, 5772.

    Google Scholar 

  54. K. Koszinowski, D. Schroder, and H. Schwarz (2003). Organometallics 22, 3809.

    Google Scholar 

  55. K. Fisher, I. Dance, G. Willett, and M. Yi (1996). J. Chem. Soc., Dalton Trans. vn709.

  56. K. Koszinowski, D. Schroder, and H. Schwarz (2004). Eur. J. Inorg. Chem. 1, 44.

    Google Scholar 

  57. M. M. Kappes and R. H. Staley (1981). J. Am. Chem. Soc. 103, 1286.

    Google Scholar 

  58. D. Schröder and H. Schwarz (1995). Angew. Chem. Int. Ed. 34, 1973; (b)D. Schroder in M. L. Gross and R. Caprioli (eds. In chief), The Encyclopaedia of Mass Spectrometry Volume 1:Theory and Ion Chemistry (Armentrout, P. Ed. ), (Elsevier, Amsterdam, 2003), pp. 810–818; (c)T. Waters, R. A. J. O 'Hair, in M. L. Gross and R. Caprioli (eds. In chief) The Encyclopaedia of Mass Spectrometry Volume 7. Fundamentals of and Applications to Organic (and Organometallic)Compounds (Nibbering, N. M. M. Ed. ), (Elsevier, Amsterdam, 2004), in press.

    Google Scholar 

  59. Y. Shi and K. M. Ervin (1998). J. Chem. Phys. 108, 1757.

    Google Scholar 

  60. P. A. Hintz and K. M. Ervin (1995). J. Chem. Phys. 103, 7897.

    Google Scholar 

  61. H. Hagen, L. D. Socaciu, M. Elijazyfer, U. Heiz, T. M. Bernhardt, and L. Wöste (2002). Phys. Chem. Chem. Phys. 4, 1707.

    Google Scholar 

  62. L. D. Socaciu, J. Hagen, T. M. Bernhardt, L. Wöste, U. Heiz, H. Häkkinen, and U. Landman (2003). J. Am. Chem. Soc. 125, 10437.

    PubMed  Google Scholar 

  63. H. Häkkinen and U. Landman (2001). J. Am. Chem. Soc. 123, 9704.

    PubMed  Google Scholar 

  64. P. Jackson, K. J. Fisher, and G. D. Willett (2000). Chem. Phys. 262, 179.

    Google Scholar 

  65. P. Jackson, K. J. Fisher, and G. D. Willett (2000). Int. J. Mass Spectrom. 197, 95.

    Google Scholar 

  66. S. Shaik, S. P. de Visser, F. Ogliaro, H. Schwarz, and D. Schröder (2002). Curr. Opin. Chem. Biol. 6, 556.

    PubMed  Google Scholar 

  67. D. Schröder, S. Shaik, and H. Schwarz (2000). Acc. Chem. Res. 33, 139.

    PubMed  Google Scholar 

  68. S. Shaik, M. Filatov, D. Schröder, and H. Schwarz (1998). Chem. Eur. J. 4, 193.

    Google Scholar 

  69. B. Chiavarino, M. E. Crestoni, and S. Fornarini (2002). Chem. Eur. J. 8, 2740.

    Google Scholar 

  70. P. Schnabel, M. P. Irion, and K. G. Weil (1991). J. Phys. Chem. 95, 9688; (b)P. Schnabel, K. G. Weil, and M. P. Irion (1992). Angew. Chem. Int. Ed. Engl. 31, 636; (c)P. Schnabel, M. P. Irion (1992). Ber. Bunsenges. Phys. Chem. 96, 1101; (d)P. Schnabel, M. P. Irion, and K. G. Weil (1992). Chem. Phys. Lett. 190, 255; (e)O. Gehret and M. P. Irion (1996). Chem. Phys. Lett. 254, 379.

    Google Scholar 

  71. I. Vezmar, M. M. Alvarez, J. T. Khoury, B. E. Salisbury, M. N. Shafigullin, and R. L. Whetten (1997). Z. Phys. D.--Atoms Molecules and Clusters 40, 147.

    Google Scholar 

  72. L. Maya, C. H. Chen, K. A. Stevenson, E. A. Kenik, S. L. Allman, and T. G. J. Thundat (2002). Nanopart. Res. 4, 417.

    Google Scholar 

  73. T. G. Schaaff, M. N. Shafigullin, J. T. Khoury, I. Vezmar, and R. L. Whetten (2001). J. Phys. Chem. B 105, 8785.

    Google Scholar 

  74. A. Muller, E. Diemann, S. Q. N. Shah, C. Kuhlmann, and M. C. Letzel (2002). Chem. Commun. 5, 440.

    Google Scholar 

  75. J. J. Gaumet, G. A. Khitrov, and G. F. Strouse (2002). Nano Lett. 2, 375.

    Google Scholar 

  76. M. M. Alvarez, I. Vezmar, R. L. Whetten (1998). J. Aerosol Sci. 29, 115.

    Google Scholar 

  77. P. A. W. Dean, K. Fisher, D. Craig, M. Jennings, O. Ohene-Fianko, M. Scudder, G. Willett, and I. Dance (2003). J. Chem. Soc. Dalton Trans. 8, 1520.

    Google Scholar 

  78. E. A. Rohlfing, D. M. Cox, and A. Kaldor (1984). J. Chem. Phys. 81, 3322.

    Google Scholar 

  79. H. W. Kroto, J. R. Heath, S. C. O 'Brien, R. F. Curl, and R. E. Smalley (1985). Nature 318, 162.

    Google Scholar 

  80. W. Krätschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman (1990). Nature 347, 354.

    Google Scholar 

  81. S. Wei, B. C. Guo, J. Purnell, S. Buzza, and A. W. Castleman (1992). Science 56, 818.

    Google Scholar 

  82. B. D. Leskiw and A. W. Castleman (2002). Comptes Rendus Physique 3, 251.

    Google Scholar 

  83. M. M. Rohmer, M. Benard, and J. M. Poblet (2000). Chem. Rev. 100, 495.

    Google Scholar 

  84. L. Gao, M. E. Lyn, D. E. Bergeron, and A. W. Castleman (2003). Int. J. Mass Spectrom 229, 11.

    Google Scholar 

  85. T. M. Ayers, J. L. Fye, Q. Li, and M. A. Duncan (2003). J. Cluster Sci. 14, 97.

    Google Scholar 

  86. N. R. M. Crawford, A. G. Hee, and J. R. Long (2002). J. Am. Chem. Soc. 124, 14842.

    PubMed  Google Scholar 

  87. C. Binns (2001). Surf. Sci. Reports 44, 1.

    Google Scholar 

  88. J. P. Zhao, D. X. Huang, A. J. Jacobson, and J. W. Rabalais (2003). Appl. Phys. Lett. 83, 3590.

    Google Scholar 

  89. R. A. J. O 'Hair (1998). Chemistry in Australia 65, 50.

    Google Scholar 

  90. W.–P. Peng, Y. Cai, Y. T. Lee, and H.–C. Chang (2003). Int. J. Mass Spectrom. 229, 67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Hair, R.A.J., Khairallah, G.N. Gas Phase Ion Chemistry of Transition Metal Clusters: Production, Reactivity, and Catalysis. Journal of Cluster Science 15, 331–363 (2004). https://doi.org/10.1023/B:JOCL.0000041199.40945.e3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOCL.0000041199.40945.e3

Navigation