Skip to main content
Log in

Polymer stabilized silver nanoparticles: A photochemical synthesis route

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study describes a novel and convenient way for the preparation of polymer stabilized colloidal silver by an ultra-violet irradiation technique. Methoxypolyethylene glycol (MPEG) generates free radicals in presence of ultra-violet radiation and acts as the reducing agent towards the silver ion. MPEG also serves as a stabilizer of the silver particles formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Henglein, J. Phy. Chem. 97 (1993) 5457.

    Google Scholar 

  2. J. Belloni, M. Mostafavi, J. L. Marignier and J. Amblard, J. Imaging Sci. 35 (1991) 68.

    Google Scholar 

  3. M. J. Ware, J. Photogr. Sci. 42 (1994) 153.

    Google Scholar 

  4. G. Schmid, “Clusters and Colloids: From Theory to Application” (VCH, Weinheim, 1994).

    Google Scholar 

  5. J. W. Slot and H. J. Geuze, J. Cell. Biol. 38 (1983) 87.

    Google Scholar 

  6. G. Carotenuto, G. P. Pepe and L. Nicolais, Eur. Phys. J. B 16 (2000) 11.

    Google Scholar 

  7. G. Carotenuto, Appl. Organomet. Chem. 15 (2001) 344.

    Google Scholar 

  8. R. J. Gehr and R. W. Boyd, Chem. Mater. 8 (1996) 1807.

    Google Scholar 

  9. D. Fornasiero and F. Grieser, J. Colloid Interface Sci. 141 (1991) 168.

    Google Scholar 

  10. P. Matejka, B. Vlckova, J. Vohlidal, P. Pancoska and V. Baumrunk, J. Phys. Chem. 96 (1992) 1361.

    Google Scholar 

  11. S. Sanchez-Cortes, J. V. Garcia-Ramos and G. Morcillo, J. Colloid Interface Sci. 167 (1994) 428.

    Google Scholar 

  12. C. H. Monro, W. E. Smith, M. Garner, J. Clarkson and P. C. White, Langmuir 11 (1995) 3712.

    Google Scholar 

  13. U. Nickel, A. Z. Castell, K. Poppl and S. Schneider, ibid. 16 (2000) 9087.

    Google Scholar 

  14. J. P. Abid, A. W. Wark, P. F. Brevet and H. H. Girault, Chem. Commun. 7 (2002) 792.

    Google Scholar 

  15. N. Kometani, H. Doi, K. Asami and Y. Yonezawa, Phys. Chem. Chem. Phys. 4 (2002) 5142.

    Google Scholar 

  16. F. Mafune, J.-Y. Kohno, Y. Takeda, T. Kondow and H. Sawabe, J. Phys. Chem. B 104 (2000) 9111.

    Google Scholar 

  17. J. Zhu, S. Liu, O. Palchik, Y. Koltypin and A. Gedanken, Langmuir 16 (2000) 6396.

    Google Scholar 

  18. Y. Zhou, S. H. Yu, X. P. Cui, C. Y. Wang and Z. Y. Chen, Adv. Mater. 11 (1999) 850.

    Google Scholar 

  19. E. Braun, Y. Eichen, U. Sivan and G. Benyoseph, Nature 391 (1998) 775.

    Google Scholar 

  20. J. Sloan, D. M. Wright, H. G. Woo, S. Bailey, G. Brown, A. P. E. York, K. S. Coleman, J. L. Hutchison and M. L. H. Green, Chem. Commun. (1999) 699.

  21. M. H. Huang, A. Choudrey and P. Yang, ibid. (2000) 1063.

  22. S. Bhattacharyya, S. K. Saha and D. Chakravorty, Appl. Phys. Lett. 76 (2000) 3896.

    Google Scholar 

  23. D. Salz, R. Lamber, M. Wark, A. Baalmann and N. Jaeger, Phys. Chem. Chem. Phys. 1 (1999) 4447.

    Google Scholar 

  24. R. He, X. Qian, J. Yin and Z. Zhu, J. Mater. Chem. 12 (2002) 3783.

    Google Scholar 

  25. V. M. Cepak and C. R. Martin, J. Phys. Chem. B 102 (1998) 9985.

    Google Scholar 

  26. M. Maillard, S. Giorgio and M. P. Pileni, ibid. 107 (2003) 2466.

    Google Scholar 

  27. A. Henglein, Ber. Bunsen-Ges. Phys. Chem. 99 (1995) 903.

    Google Scholar 

  28. M. P. Pileni, New J. Chem. (1998) 693.

  29. S. Link and M. A. El-Sayed, J. Phys. Chem. B 103 (1999) 4212. (b) M. A. EL-SAYED, Acc. Chem. Res. 34 (2001) 257.

    Google Scholar 

  30. S.-H. Kim, G. Medeiros-Rebeiro, D. A. A. Ohlberg, R. S. Williams and J. R. Heath, J. Phys. Chem. B 103 (1999) 10341.

    Google Scholar 

  31. S. Chen, R. S. Ingram, M. J. Hostetler, J. J. Peitron, R. W. Murray, T. G. Schaaff, J. T. Khoury, M. M. Alvarez and R. L. Whetten, Science 280 (1998) 2098.

    Google Scholar 

  32. A. Henglein and D. Meisel, Langmuir 14 (1998) 7392.

    Google Scholar 

  33. P. Mulvaney, in “Semiconductor Nanoclusters-Physical, Chemical and Catalytic Aspects”, edited by P. V. Kamat and D. Meisel (Elsevier Science: Amsterdam, 1997).

    Google Scholar 

  34. U. Kreibig and M. Vollmer, “Optical Properties of Metal Clusters” (Springer, Berlin, 1995).

    Google Scholar 

  35. P. Mulvaney, Langmuir 12 (1996) 788.

    Google Scholar 

  36. M. M. Alvarez, J. T. Khoury, T. G. Schaaff, M. N. Shafigullin, I. Vezmar and R. L. Whetten, J. Phys. Chem. B 101 (1997) 3706.

    Google Scholar 

  37. T. G. Schaaff, M. N. Shafigullin, J. T. Khoury, I. Vezmar, R. L. Whetten, W. G. Cullen, P. N. First, C. Gutierrez-Sing, J. Ascensio and M. J. Jose-Yacaman, ibid. 101 (1997) 7885.

    Google Scholar 

  38. J. R. Heath, C. M. Knobler and D. V. Leff, ibid. 101 (1997) 189.

    Google Scholar 

  39. U. Kreibig, M. Gartz, A. Hilger and H. Hovel, in “Fine Particles Science and Technology,” edited by E. Pelizzatti, (Kluwer Academic Publishers, Boston, 1996).

    Google Scholar 

  40. N. Pradhan, N. R. Jana, K. Mallick and T. Pal, J. Surface Sci. Technol. 16 (2000) 188.

    Google Scholar 

  41. A. Heglein, Ber. Bunsenges. Phys. Chem. 81 (1977) 556.

    Google Scholar 

  42. J. Belloni and M. Mostafavi, in “Metal Clusters in Chemistry,” edited by P. Braunstein, L. A. Oro, and P. R. Raithby (J. Wiley, VCH, III, 1999).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallick, K., Witcomb, M.J. & Scurrell, M.S. Polymer stabilized silver nanoparticles: A photochemical synthesis route. Journal of Materials Science 39, 4459–4463 (2004). https://doi.org/10.1023/B:JMSC.0000034138.80116.50

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000034138.80116.50

Keywords

Navigation