Skip to main content
Log in

A computational analysis of the percolation threshold and the electrical conductivity of carbon nanotubes filled polymeric materials

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Percolation of individual single walled carbon nanotubes (SWCNTs) and of SWCNT bundles dispersed in a non-interacting polymeric matrix has been analyzed computationally using an analytical model and a numerical simulation method. While the analytical model used is strictly valid only in the limit of an infinite length-to-diameter aspect ratio of the dispersed phase, good agreement is found between its predictions and the ones obtained using a computationally-intensive numerical method for the aspect ratios as small as 350. Since the aspect ratio of the individual SWCNTs is on the order of 1,000–10,000, this finding suggests that the analytical model can be used to study SWCNT percolation phenomena.

An electrical network model is also applied to the percolating and near-percolating SWCNT clusters in order to compute the dc electrical conductivity of a CP2 polyimide + SWCNT composite material. A reasonably good agreement is obtained between the computational and the experimental results with respect to both the magnitude of the electrical conductivity and to its behavior in the vicinity of the percolation threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. F. Parker, K. P. Williams, P. Meehan, M. A. Adams and J. S. Tomkinson, Appl. Spectr. 48 (1994) 669.

    Google Scholar 

  2. S. Iijima, Nature 354 (1991) 56.

    Google Scholar 

  3. Z. Ounaies, C. Park, K. E. Wise, E. J. Siochi and J. S. Harrison, Comp. Sci. Tech. 63 (2003) 1637.

    Google Scholar 

  4. Balberg, N. Binenbaum and N. Wagner, Phys. Rev. Lett. 52 (1984) 1465.

    Google Scholar 

  5. I. Balberg, C. H. Anderson, S. Alexander and N. Wagner, Phys. Rev. B 30 (1984) 3933.

    Google Scholar 

  6. A. L. R. Bug, S. A. Safran and I. Webman, Phys. Rev. Lett. 54 (1985) 1412.

    Google Scholar 

  7. Idem., Phys. Rev. B 33 (1986) 4716.

    Google Scholar 

  8. S. H. Munson-McGee, ibid. 43 (1991) 3331.

    Google Scholar 

  9. A. Celzard, E. McRae, C. Deleuze, M. Dufort, G. Furdin and J. F. Mareche, ibid. 53 (1996) 6209.

    Google Scholar 

  10. Z. Neda, R. Florian and Y. Brechet, ibid. E 59 (1999) 3717.

    Google Scholar 

  11. L. Onsager, Ann. NY Acad. Sci. 51 (1949) 627.

    Google Scholar 

  12. A. M. Somoza, C. Sagui and C. Roland, Phys. Rev. B 63 (2001) 81403.

    Google Scholar 

  13. P. Bjerager, J. Engrg. Mech. 114 (1987) 1.

    Google Scholar 

  14. B. Allen, Adv. Chem. Phys. 63 (2001) 81403.

    Google Scholar 

  15. M. E. J. Newman and R. M. Ziff, Phys. Rev. E 86 (1993) 1.

    Google Scholar 

  16. SPICE 3, http://www.eecs.berkeley.edu/.

  17. M. Sahimi, “Applications of Percolation Theory” (Taylor and Francis, London 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grujicic, M., Cao, G. & Roy, W.N. A computational analysis of the percolation threshold and the electrical conductivity of carbon nanotubes filled polymeric materials. Journal of Materials Science 39, 4441–4449 (2004). https://doi.org/10.1023/B:JMSC.0000034136.11779.96

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000034136.11779.96

Keywords

Navigation