Skip to main content
Log in

Cradle-to-grave simulation-based design incorporating multiscale microstructure-property modeling: Reinvigorating design with science

  • Published:
Journal of Computer-Aided Materials Design

Abstract

We propose a new paradigm for design that incorporates scientifically oriented research directly and feasibly into engineering design practice. The goal is to use this simulation-based tool earlier in design to achieve more optimized components and systems. The method to accomplish this bridge of science and engineering is by using thermodynamically constrained internal state variables that are physically based upon microstructure-property relations. When the microstructure-property relations are included in the internal state variable rate equations, history effects can be captured. Hence, the cradle-to-grave notion arises. The method to help determine the appropriate microstructure-property relations for the internal state variables is through a multiscale modeling methodology which includes experimentation. As such, scientifically oriented research occurs in the multiscale methodology, and the engineering design practice employs the cradle-to-grave internal state variable model. An example of the multiscale methodology is presented in terms of a cast A356 aluminum alloy used in automotive design, and an example of the cradle-to-grave simulation based design is presented in terms of a stamped product used in a crash scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campbell, C.E. and Olson, G.B., J. Comp.-Aid. Mater. Des., 7 (2000) 145.

    Google Scholar 

  2. Coleman, B.D. and Gurtin, M.E., J. Chem.Phys., 47 (1967) 597.

    Google Scholar 

  3. Rice, J.R. J. Mech. Phys. Solids, 9 (1971) 433.

    Google Scholar 

  4. Kestin, J. and Rice, J.R., A Critical Review of Thermodynamics, In. E.B. Stuart (Ed.) Mono Book Corp., Baltimore (1970) 275.

    Google Scholar 

  5. Talreja, R., Am. Soc. Mech. Eng., Mat. Div. (Publication) MD, v 80, Compos. Funct. Graded Mater. (1997) 151.

    Google Scholar 

  6. Hasan, O.A. and Boyce, M.C., Polymer Engin. Sci., 35 (1995) 331.

    Google Scholar 

  7. Talreja, R., Mech. Mater., 12 (1991) 165.

    Google Scholar 

  8. Talreja, R., Am. Soc. Mech. Engin. Appl. Mech. Div. AMD, v 166 (1993) 89.

    Google Scholar 

  9. Kocks, U. F., Metall. Trans., 1 (1970) 1121.

    Google Scholar 

  10. Follansbee, P.S., Metallurgical Applications of Shock-Wave and High-Strain Rate Phenomena, In Murr L.E., Staudhammer K.P. and Meyers, M. (Eds.) Dekker, New York (1986) 451.

    Google Scholar 

  11. Follansbee, P.S. and Kocks, U.F., Acta Metall., 36 (1988) 81.

    Google Scholar 

  12. Freed, A.D., Thermoviscoplastic model with application to copper, (NASA Lewis Research Cent), NASA Technical Paper, 2845 (1988) 17.

  13. Bammann, D.J., Int. J. Engng. Sci., 22 (1984) 1041.

    Google Scholar 

  14. Chaboche, J.L., Bull. de l' Acad. Polonaise des Sciences, Se'rie Sc. et Techn., 25 (1977) 33.

    Google Scholar 

  15. Onsager, L., Phys. Rev., 37 (1931) 405; 38 (1931) 2265.

    Google Scholar 

  16. Eckart, C., Phys. Rev., 58 (1940) 267.

    Google Scholar 

  17. Eckart, C., Phys. Rev., 73 (1948) 373.

    Google Scholar 

  18. Kroner, E., How the Internal State of a Physically Deformed Body is to be Described in a Continuum Theory, 4th Int. Congress on Rheology (1960).

  19. Germain, P., Nguyen, Q.S. and Suguet, P., J. Appl. Mech. Transact. ASME, 50 (1983) 1010.

    Google Scholar 

  20. Krajcinovic D., J. Appl. Mech., Transact. ASME, 50 (1983) 355.

    Google Scholar 

  21. Venkadesan, S., Rodriguez, P., Padmanabhan, K.A., Sivaprasad, P.V. and Phaniraj, C. Mater. Sci. & Engin. A: Struct. Mater.: Prop., Microstruct. Process., A154 (1992) 69.

    Google Scholar 

  22. Bammann, D.J., Chiesa, M.L., Horstemeyer, M.F. and Weingarten, L.I., Failure in Ductile Materials Using Finite Element Methods, In N. Jones and T. Weirzbicki, (Eds.) Structural Crashworthiness and Failure, Elsevier Applied Science, (1993) 1.

  23. Bammann, D.J., Chiesa, M.L., Johnson, G.C. Modeling Large Deformation and Failure in Manufacturing Processes, Theoretical and Applied Mechanics, In. T. Tatsumi, E. Wannabe, and T. Kambe (Eds.) Elsevier Science (1996) 359.

  24. Tanner, A.B., McGinty, R.D. and McDowell, D.L., Intern. J. Plastic., 15 (1999) 575.

    Google Scholar 

  25. Woodmansee, M.W. and Neu, R.W., Mater. Sci. Engin. A, 322 (2002) 79.

    Google Scholar 

  26. Horstemeyer, M.F., Osborne, R. and Penrod, D., Microstructure-Property Analysis and Optimization of a Control Arm, American Foundary Society, AFS Transactions, 02-036 (2002) 297.

    Google Scholar 

  27. Horstemeyer, M.F., Matalanis, M.M., Sieber, A.M. and Botos, M.L., Int J. Plastic., 16 (2000a) 979.

    Google Scholar 

  28. Bammann, D.J., Appl. Mech. Rev., 43 (1990) 312.

    Google Scholar 

  29. Shenoy, V.B., Miller, R., Tadmor, E.B., Rodney, D., Phillips, R. and Ortiz, M., J. Mech. Phys. Solids, 47 (1999) 611.

    Google Scholar 

  30. Hughes, T.J.R., Oberai, A.A. and Mazzei, L., Phys. Fluids, 13 (2002) 1784.

    Google Scholar 

  31. Moorthy, S. and Ghosh, S., Internl J. Num. Meth. Engin., 39 (1996) 2363.

    Google Scholar 

  32. Gall, K.A., Horstemeyer, M.F., Van Schilfgaarde, M. and Baskes, M.I., J. Mech. Phys. Solids, 48 (2000) 2183.

    Google Scholar 

  33. Dighe, M.D., Gokhale, A.M., Horstemeyer, M.F. and Mosher, D.A., Metall. Transact A, 31A (2000) 1725.

    Google Scholar 

  34. Dighe, M.D., Gokhale, A.M. and Horstemeyer, M.F., Metall. Mater. Transact., 29A (1998) 905.

    Google Scholar 

  35. Horstemeyer, M.F. and Gokhale, A.M. Intern. J. Solids Struct., 36 (1999) 5029.

    Google Scholar 

  36. Dighe, M.D., Gokhale, A.M. and Horstemeyer, M.F., Metall. Mater. Transact. A, 33A (2002) 555.

    Google Scholar 

  37. Horstemeyer, M.F. and Ramaswamy, S. Int. J. Damage Mech., 9 (2000) 6.

    Google Scholar 

  38. Horstemeyer, M.F., Lathrop, J., Gokhale, A.M. and Dighe, M., Theor. Appl. Fract. Mech., 33 (2000b) 31.

    Google Scholar 

  39. Horstemeyer, M.F., Scripta Mater., 39, (1998) 1491.

    Google Scholar 

  40. Zabaras, N., The Integration of Material, Process and Product Design (Netherlands) (1998) 249.

  41. Dantzig, J.A., Provatas, N. and Goldenfeld, N., Modeling Multiple Length Scales in Solidification, Balkema Publishers, The Integration of Mateiral, Process and Product Design (Netherlands) (1998) 175.

  42. Boettinger, W.J., Warren, J.A., Beckermann, C. and Karma, A., Ann. Rev. Mater. Rev., 32 (2002) 163.

    Google Scholar 

  43. Hoyt, J.J., Asta, M. and Karma, A., Interface Sci., 10 (2002) 181.

    Google Scholar 

  44. Voller, V.R., Internl. Heat Mass Transfer, 43 (2000) 2047.

    Google Scholar 

  45. Vermolen, F., Vuik, K., van der Zwaag, S. Mater. Sci. Engin., A254 (1998) 13.

    Google Scholar 

  46. Wang, P.T. and Karabin, M.E., Powder Technol., 78 (1993) 67.

    Google Scholar 

  47. Wang, P.T., Roadman, R.E., Jin, Z. and Alexandrov, S., Fracture Behavior of Al-Mg Alloy at Elevated Temperature Processes, Proc. of Hot Deformation of Aluminum Alloys, TMS Annual Meeting (2003).

  48. Alexandrov, S. and Wang, P.T. Simplified Solutions to Determine Hydrostatic Stress and Surface Behavior in Extrusion (Drawing), Proc. 10th Int. Conf. METAL2001, Ostrva, Russia, (2001) 1.

  49. Kocks, U.F., Dislocation and Properties of Real Materials, Institute of Metals, London (1985) 125.

    Google Scholar 

  50. Mecking, H. and Estrin, Y. Constitutive Relations and their Physical Basis, In Anderson S.I. et al. (Eds.) Riso National Laboratory, Roskilde, Denmark (1987) 123.

    Google Scholar 

  51. Humphreys, F.J. and Hatherly, M., Recrystallization and Related Annealing Phenomena, Elsevier Science Inc. (1995).

  52. Suni, J.P., Weiland, H. and Shuey, R.T. Modell. Simul. Mater. Sci. Engin., 8 (2002) 737.

    Google Scholar 

  53. Nes, E., Progr. Mater. Sci., 41 (1998) 129.

    Google Scholar 

  54. Staley, J.T., and Tiryakioglu, M., Adv. Metall. Alum. Alloys (2001) 6.

  55. Iwakuma, T. and Nemat-Nasser, S., Proc. R. Soc. Lond. A, 394 (1984) 87.

    Google Scholar 

  56. Wang, P.T., Van Geertruyden, W.H. and Misiolek, W.Z., Surface Recrystallization of Al-Mg-Si Alloy during Extrusion, Symposium of Microstructure Modeling in Aluminum, ASM Fall Meeting, in preparation.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horstemeyer, M., Wang, P. Cradle-to-grave simulation-based design incorporating multiscale microstructure-property modeling: Reinvigorating design with science. Journal of Computer-Aided Materials Design 10, 13–34 (2003). https://doi.org/10.1023/B:JCAD.0000024171.13480.24

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JCAD.0000024171.13480.24

Navigation