Skip to main content
Log in

Development of an Electrodeposited Nanomold from Compositionally Modulated Alloys

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Electrodeposited multilayers of NiCu/Cu and NiFeCu/Cu were examined for nanoimprinting applications. Layer sizes on the order of 100 nm were deposited and the copper layer etched. Current efficiency and layer composition of electrolytes having different pH values were examined utilizing a rotating disk electrode. Due to large grain growth in the NiCu/Cu system, the bilayers resulted in a macroscopic waviness of the layers. Adding Fe in a small concentration successfully produced straight layers. As an example of the replication technique, the metal multilayer-etched stamp was used to cast the multilayer image in rubber and emboss it in Teflon®.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Hirai and Y. Tanaka, J. Photopolymer Sci. Technol. 15(3) (2002) 474.

    Google Scholar 

  2. S.Y. Chou, Sci. Spectra 10 (1998) 38.

    Google Scholar 

  3. S. Zankovych, I. Maximov, I. Shorubalko, J. Seekamp, M. Beck, S. Romanov, D. Reuter, P. Schafmeister, A.D. Wieck, J. Ahopelto, C.M. Sotomayor Torres and L. Montelius, Microelectron. Eng. 67–68 (2003) 214.

  4. K.D. Bird and M. Schlesinger, J. Electrochem. Soc. 142 (1995) L65.

    Google Scholar 

  5. E. Toth-Kadar, L. Peter, T. Becsei, J. Toth, L. Pogany, T. Tarnoczi, P. Kamasa, I. Bakonyi, G. Lang, A. Cziraki and W. Schwarzacher, J. Electrochem. Soc. 147 (2000) 3311.

    Google Scholar 

  6. P. Nallet, E. Chassaing, M.G. Walls and M.J. Hytch, J. Appl. Phys. 79 (1996) 6884.

    Google Scholar 

  7. Y. Jyoko, S. Kashiwabara and Y. Hayashi, J. Electrochem. Soc. 144 (1997) L5.

    Google Scholar 

  8. E. Chassaing, A. Morrone and J.E. Schmidt, J. Electrochem. Soc. 146 (1999) 1794.

    Google Scholar 

  9. L. Peter, A. Cziraki, L. Pogany, Z. Kupay, I. Bakonyi, M. Uhlemann, M. Herrich, B. Arnold, T. Bauer and K. Wetzig, J. Electrochem. Soc. 148 (2001) C168.

    Google Scholar 

  10. M. Alper, K. Attenborough, R. Hart, S.J. Lane, D.S. Lashmore, C. Younes and W. Schwarzacher, Appl. Phys. Lett. 63 (1993) 2144.

    Google Scholar 

  11. M. Alper, K. Attenborough, V. Baryshey, R. Hart and D.S. Lashmore, J. Appl. Phys. 75 (1994) 6543.

    Google Scholar 

  12. M. Alper, W. Schwarzacher and S.J. Lane, J. Electrochem. Soc. 144 (1997) 2346.

    Google Scholar 

  13. A.P. O'Keefe, O.I. Kasyutich, W. Schwarzacher, L.S. de Oliveira and A.A. Pasa, Appl. Phys. Lett 73 (1998) 1002.

    Google Scholar 

  14. O.I. Kasyutich, W. Schwarzacher, V.M. Fedosyuk, P.A. Laskarzhevskiy and A.I. Masliy, J. Electrochem. Soc. 147 (2000) 2964.

    Google Scholar 

  15. P.L. Cavallotti, D. Manara, R. Vallauri, A. Vicenzo, J. Machado da Silva and M.A. Sa, in L.T. Romankiw, S. Krognelb and C.H. Ahn (Eds), Magnetic Materials, Processes, and Devices', PC 98-20 (The Electrochemical Society Proceedings Series, Pennington, NJ, 1998), P.156.

    Google Scholar 

  16. E. Chassaing, P. Nallet and M.F. Trichet, J. Electrochem. Soc. 143 (1996) L98.

    Google Scholar 

  17. L.T. Romankiw and D.J. Olsen, in L.T. Romankiw and D.A. Hermon, Jr. (Eds), 'Magnetic Materials, Processes, and Devices', PV 90-8, (The Electrochemical Society Proceedings Series, Pennington, NJ, 1990), p. 339.

    Google Scholar 

  18. K. Attenborough, R. Hart, S.J. Lane, M. Alperand and W. Schwarzacher, J. Magn. Magn. Mater. 148 (1995) 335.

    Google Scholar 

  19. Q. Huang, D.P. Young, J.Y. Chan, J. Jiang and E.J. Podlaha, J. Electrochem. Soc. 149(6) (2002) C349.

    Google Scholar 

  20. D. Simunovich, M. Schlesinger and D.D. Snyder, J. Electrochem. Soc. 141(1) (1994) L10.

    Google Scholar 

  21. Ch. B nhÔ te, Ph.D. Disseration, Ecole Polytechnique Federale de Lausanne, Switzerland (1998). Jap. J. Appl. Phys. 40(10) (2001) 5961.Ô

    Google Scholar 

  22. R. Perez and J. Gomez, Microscopy Research and Technique 40(1) (1998) 10.

    Google Scholar 

  23. T. Hasegawa, S. Aria, N. Kaneko and N. Shinohara, Annual Meeting of the Electrochemical Society of Japan Proceedings, 2E19, p. 89, (2001).

  24. S. Aria, T. Hasegawa and N. Kaneko, J. Electrochem. Soc. 150(11) (2003) C798.

    Google Scholar 

  25. S.D. Leith and Schwartz, J. Micromech. Microeng. 9 (1999) 97.

  26. J.M. Brownlow, J. Appl. Phys. 38 (1967) 1440.

    Google Scholar 

  27. L.T. Romankiw,Proceedings of Second International Symposium on Magnetic Materials, Process and Devices, PV92-10 (The Electrochemical Society proceedings series, Pennington, NJ, 1992), p.367.

    Google Scholar 

  28. P.E. Bradley and D. Landolt, Electrochim. Acta 45(7) (1999) 1077.

    Google Scholar 

  29. Ch. BÔ nhÔte and D. Landolt, Electrochim. Acta 42(15) (1997) 2407.

    Google Scholar 

  30. L. Giuliani and M. Lazzari, Electrochimica Metallorum. 3(1) (1968) 45.

    Google Scholar 

  31. C. Brenner, 'Electrodeposition of Alloys' (A) (Academic Press, New York, 1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, CY., Huang, Q., Xie, X. et al. Development of an Electrodeposited Nanomold from Compositionally Modulated Alloys. Journal of Applied Electrochemistry 34, 857–866 (2004). https://doi.org/10.1023/B:JACH.0000035605.46239.6c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JACH.0000035605.46239.6c

Navigation