Skip to main content
Log in

Inhibition of hyaluronan degradation by dextran sulphate facilitates characterisation of hyaluronan synthesis: An in vitro and in vivo study

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The concentration and molecular weight of hyaluronan often dictates its physiological function. Consequently full characterisation of the anabolic products and turnover rates of HA could facilitate understanding of the role that HA metabolism plays in disease processes. In order to achieve this it is necessary to interrupt the dynamic balance between concurrent HA synthesis and degradation, achievable through the inhibition of the hyaluronidases, a group of enzymes which degrade HA. The sulphated polysaccharide, dextran sulphate has been demonstrated to competitively inhibit testicular hyaluronidase in a non-biological system, but its application to in vitro biological systems had yet to be developed and evaluated. This study determined the inhibitory concentrations of dextran sulphate against both testicular and Streptomyces hyaluronidase in a cell-free and breast cancer model followed by characterisation of the effect that hyaluronidase inhibition exerted on HA synthesis and degradation. The IC100 of dextran sulphate for both hyaluronidases in a cell-free and biological system was determined to be ≥400 μg/ml. At concentrations up to 10 mg/ml the dextran sulphate did not effect breast cancer cell proliferation or morphology, while at 400 μg/ml HA degradation was totally inhibited, enabling an accurate quantitation of HA production as well as characterisation of the cell-associated and liberated HA. FACS quantitation of the HA receptor CD44, HA synthase and the hyaluronidases HYAL 1 and HYAL 2 demonstrated that dextran sulphate down-regulated CD44 and HA synthase while upregulating the hyaluronidases. These results suggest dynamic feedback signalling and complex mechanisms occur in the net deposition of HA in vivo. Published in 2004.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Noble PW, Hyaluronan and its catabolic products in tissue injury and repair, Matrix Biol 21, 25–9 (2002).

    Article  PubMed  CAS  Google Scholar 

  2. West DC, Kumar S, The effect of hyaluronate and its oligosaccharides on endothelial cell proliferation and monolayer integrity, Exp Cell Res 183, 179–96 (1989).

    Article  PubMed  CAS  Google Scholar 

  3. Noble PW, McKee CM, Cowman M, Shin HS, Hyaluronan fragments activate an NF-kappa B/I-kappaBalpha autoregulatory loop in murine macrophages, J Exp Med 183, 2373–8 (1996).

    Article  PubMed  CAS  Google Scholar 

  4. Turino GM, Cantor JO, Hyaluronan in respiratory injury and repair, Am J Respir Crit Care Med 167, 1169–75 (2003).

    Article  PubMed  Google Scholar 

  5. Toole BP, Hyaluronan in morphogenesis, J Intern Med 242, 35–40 (1997).

    Article  PubMed  CAS  Google Scholar 

  6. Knudson CB, Knudson W, Hyaluronan-binding proteins in development, tissue homeostasis, and disease, FASEB J 7, 1233–41 (1993).

    PubMed  CAS  Google Scholar 

  7. Entwistle J, Hall CL, Turley EA, HA receptors: Regulators of signalling to the cytoskeleton, J Cell Biochem 61, 569–77 (1996).

    Article  PubMed  CAS  Google Scholar 

  8. Lesley J, Hyman R, CD44 structure and function, Front Biosci 3,616–30 (1998).

    Google Scholar 

  9. Stoop R, Gal I, Glant TT, McNeish JD, Mikecz K, Trafficking of CD44-deficient murine lymphocytes under normal and inflammatory conditions, Eur J Immunol 32, 2532–42 (2002).

    Article  PubMed  CAS  Google Scholar 

  10. Jiang H, Peterson RS, Wang W, Bartnik E, Knudson CB, Knudson W, A requirement for the CD44 cytoplasmic domain for hyaluronan binding, pericellular matrix assembly, and receptor-mediated endocytosis in COS-7 cells, J Biol Chem 277, 10531–8 (2002).

    Article  PubMed  CAS  Google Scholar 

  11. Knudson CB, Hyaluronan, CD44: Strategic players for cellmatrix interactions during chondrogenesis and matrix assembly, Birth Defects Res Part C Embryo Today 69, 174–96 (2003).

    Article  CAS  Google Scholar 

  12. Itano N, Kimata K, Molecular cloning of human hyaluronan synthase, Biochem Biophys Res Comm 222, 816–20 (1996).

    Article  PubMed  CAS  Google Scholar 

  13. Mio K, Stern R, Inhibitors of the hyaluronidases, Matrix Biol 21,31–7 (2002).

    Article  PubMed  CAS  Google Scholar 

  14. Prehm P, Mausolf A, Isolation of streptococcal hyaluronate synthase, Biochem J 235, 887–89 (1986).

    PubMed  CAS  Google Scholar 

  15. Weigel PH, Hascall VC, Tammi, M, Hyaluronan synthases, J Biol Chem 272, 13997–4000 (1997).

    Article  PubMed  CAS  Google Scholar 

  16. Itano N, Sawai T, Yoshida M, Lenas P, Yamada Y, Imagawa M, Shinomura T, Hamaguchi M, Yoshida Y, Ohnuki Y, Miyauchi S, Spicer AP, McDonald JA, Kimata K, Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties, J Biol Chem 274, 25085–92 (1999).

    Article  PubMed  CAS  Google Scholar 

  17. Csoka AB, Frost GI, Stern R, The six hyaluronidase-like genes in the human and mouse genomes, Matrix Biol 20, 499–508 (2001).

    Article  PubMed  CAS  Google Scholar 

  18. Rai SK, Duh FM, Vigdorovich V, Danilkovitch-Miagkova A, Lerman MI, Miller AD, Candidate tumor suppressor HYAL2 is a glycosylphosphatidylinositol (GPI)-anchored cell-surface receptor for jaagsiekte sheep retrovirus, the envelope protein of which mediates oncogenic transformation, Proc Natl Acad Sci USA 98,4443–8 (2001).

    Article  PubMed  CAS  Google Scholar 

  19. Tammi R, Rilla K, Pienimaki JP, MacCallum DK, Hogg M, Luukkonen M, Hascall VC, Tammi M, Hyaluronan enters keratinocytes by a novel endocytic route for catabolism, J Biol Chem 276, 35111–22 (2001).

    Article  PubMed  CAS  Google Scholar 

  20. Kreil G, Hyaluronidases-a group of neglected enzymes, Protein Sci 4, 1666–9 (1995).

    Article  PubMed  CAS  Google Scholar 

  21. Hawkins CL, Davies MJ, Direct detection and identification of radicals generated during the hydroxyl radical-induced degradation of hyaluronic acid and related materials, Free Radic Biol Med 21, 275–90 (1996).

    Article  PubMed  CAS  Google Scholar 

  22. McNeil JD, Wiebkin OW, Betts WH, Cleland LG, Depolymerisation products of hyaluronic acid after exposure to oxygen-derived free radicals, Ann Rheum Dis 44, 780–9 (1985).

    Article  PubMed  CAS  Google Scholar 

  23. Moseley R, Waddington RJ, Embery G, Degradation of glycosaminoglycans by reactive oxygen species derived from stimulated polymorphonuclear leukocytes, Biochim Biophys Acta 1362,221–31 (1997).

    PubMed  CAS  Google Scholar 

  24. Asplund T, Versnel MA, Laurent TC, Heldin P, Human mesothelioma cells produce factors that stimulate the production of hyaluronan by mesothelial cells and fibroblasts, Cancer Res 53,388–92 (1993).

    PubMed  CAS  Google Scholar 

  25. Li Y, Heldin P, Hyaluronan production increases the malignant properties of mesothelioma cells, Br J Cancer 85, 600–7 (2001).

    Article  PubMed  CAS  Google Scholar 

  26. Zimmermann K, Preinl G, Ludwig H, Greulich K, Inhibition of hyaluronidase by dextran sulphate and its possible application in anticancer treatment, J Cancer Res Clin Oncol 105, 189–90 (1983).

    Article  PubMed  CAS  Google Scholar 

  27. McCarthy RE, Babcock GF, Simultaneous stimulation and suppression of two different indicators of the cell-mediated immune response by the immunoregulator dextran sulphate, Immunology 34, 927–9 (1978).

    PubMed  CAS  Google Scholar 

  28. Babcock G, McCarthy RE, Suppression of cell-mediated immune responses by dextran sulphate, Immunology 33, 925–9 (1977).

    PubMed  CAS  Google Scholar 

  29. Callahan LN, Phelan M, Mallinson M, Norcross MA, Dextran sulphate blocks antibody binding to the principal neutralizing domain of human immunodeficiency virus type 1 without interfering with gp120-CD44 interactions, J Virol 65, 1543–50 (1991).

    PubMed  CAS  Google Scholar 

  30. Leong JM, Morrissey PE, Ortega-Barria E, Pereira MEA, Coburn J, Hemagglutination and proteoglycan binding by theLymedisease spirochete, Borrelia burgdorferi Infect Immun 63, 874–83 (1995).

    CAS  Google Scholar 

  31. Hagiwara A, SawaiK, Sakakura C, Shirasu M, Ohgaki M, Imanishi T, Yamasaki J, Togawa T, Takahashi T, Prevention of peritoneal metastasis of cancer with dextran sulphate-an experimental study in mice, Anti-Cancer Drugs 8, 894–7 (1997).

    PubMed  CAS  Google Scholar 

  32. Sundblad L, Glycosaminoglycans and glycoproteins in synovial fluid. In: The Amino Sugars. The Chemistry and Biology of CompounDxS Containing Amino Sugars, edited by Balazs EA and Jeanloz JW (Academic Press, New York and London, 1965) pp. 229–50.

    Google Scholar 

  33. Nelson N, A photometric adaptation of the Somogyi method for the determination of glucose, J Biol Chem 153, 375–80 (1944).

    CAS  Google Scholar 

  34. Wang C, Zhang S, Turley EA, The role of hyaluronan receptors in breast cancer cell invasion, motility and proliferation. Fourth International Workshop on Hyaluronan in Drug Delivery, edited by Willoughby D (Royal Society of Medicine Press Round Table Series 45, New York and London, 1996) pp. 37–53.

  35. Brown TJ, Laurent UB, Fraser JR, Turnover of hyaluronan in synovial joints: Elimination of labelled hyaluronan from the knee joint of the rabbit, Exp Physiol 76, 125–34 (1991).

    PubMed  CAS  Google Scholar 

  36. Goto M, Kataoka Y, Kimura T, Goto K, Sato H, Decrease of saturation density of cells of hamster cell lines after treatment with dextran sulphate, Exp Cell Res 82, 367–74 (1973).

    Article  PubMed  CAS  Google Scholar 

  37. Suemasu K, Watanabe K, Ishikawa S, Contribution of polyanionic character of dextran sulphate to inhibition of cancer metastasis, Gann 62, 331–6 (1971).

    PubMed  CAS  Google Scholar 

  38. Chiu HC, Wu YC, Lu YC, Effect of dextran sulphate on the growth of cultured fibroblasts derived from normal human skin and keloid lesions, Taiwan Yi Xue Hui Za Zhi 86, 264–70 (1987).

    PubMed  CAS  Google Scholar 

  39. Hardingham TE, Muir H, The specific interaction of hyaluronic acid with cartilage proteoglycans, Biochim Biophys Acta 279, 401–5 (1972).

    PubMed  CAS  Google Scholar 

  40. Yudin AI, Li MW, Robertson KR, Cherr GN, Overstreet JW, Characterization of the active site of monkey sperm hyaluronidase, Reproduction 121, 735–43 (2001).

    Article  PubMed  CAS  Google Scholar 

  41. Vercruysse KP, Ziebell MR, Prestwich GD, Control of enzymatic degradation of hyaluronan by divalent cations, Carbohydr Res 318,26–37 (1999).

    Article  PubMed  CAS  Google Scholar 

  42. Maksimenko AV, Schechilina YV, Tischenko EG, Role of the glycosaminoglycan microenvironment of hyaluronidase in regulation of its endoglycosidase activity, Biochemistry (Mosc) 68, 862–8 (2003).

    Article  CAS  Google Scholar 

  43. Markovic-Housley Z, Miglierini G, Soldatova L, Rizkallah PJ, Muller U, Schirmer T, Crystal structure of hyaluronidase, a major allergen of bee venom, Structure Fold Des 8, 1025–35 (2000).

    Article  PubMed  CAS  Google Scholar 

  44. Rigden DJ, Galperin MY, Jedrzejas MJ, Analysis of structure and function of putative surface-exposed proteins encoded in the Streptococcus pneumoniae genome: A bioinformatics-based approach to vaccine and drug design, Crit Rev Biochem Mol Biol 38, 143–68 (2003).

    PubMed  CAS  Google Scholar 

  45. Luke HJ, Prehm P, Synthesis and shedding of hyaluronan from plasma membranes of human fibroblasts and metastatic and nonmetastatic melanoma cells, Biochem J 343, 71–5 (1999).

    Article  PubMed  CAS  Google Scholar 

  46. Prehm P, Release of hyaluronate from eukaryotic cells, Biochem J 267, 185–9 (1990).

    PubMed  CAS  Google Scholar 

  47. Philipson LH, Westley J, Schwartz NB, Effect of hyaluronidase treatment of intact cells on hyaluronate synthetase activity, Biochemistry 24, 7899–906 (1985).

    Article  PubMed  CAS  Google Scholar 

  48. Szatrowski TP, Nathan CF, Production of large amounts of hydrogen peroxide by human tumor cells, Cancer Res 51, 794–8(1991).

    PubMed  CAS  Google Scholar 

  49. Formby B, Stern R, Lactate-sensitive response elements in genes involved in hyaluronan catabolism, Biochem Biophys ResCommun 305, 203–8 (2003).

    Article  CAS  Google Scholar 

  50. Knudson W, Chow G, Knudson CB, CD44-mediated uptake and degradation of hyaluronan, Matrix Biol 21, 15–23 (2002).

    Article  PubMed  CAS  Google Scholar 

  51. Presti D, Scott JE, Hyaluronan-mediated protective effect against cell damage caused by enzymatically produced hydroxyl (OH) radicals is dependent on hyaluronan molecular mass, Cell Biochem Funct 12, 281–8 (1994).

    Article  PubMed  CAS  Google Scholar 

  52. Stern R, Shuster S, Wiley TS, Formby B, Hyaluronidase can modulate expression of CD44, Exp Cell Res 266, 167–76 (2001).

    Article  PubMed  CAS  Google Scholar 

  53. Croce MA, Boraldi F, Quaglino D, Tiozzo R, Pasquali-Ronchetti I, Hyaluronan uptake by adult human skin fibroblasts in vitro, Eur J Histochem 47, 63–73 (2003).

    PubMed  CAS  Google Scholar 

  54. Dowthwaite GP, Flannery CR, Flannelly J, Lewthwaite JC, Archer CW, Pitsillides AA, A mechanism underlying the movement requirement for synovial joint cavitation, Matrix Biol 22, 311–22 (2003).

    Article  PubMed  CAS  Google Scholar 

  55. Slevin M, Kumar S, Gaffney J, Angiogenic oligosaccharides of hyaluronan induce multiple signalling pathways affecting vascular endothelial cell mitogenic and wound healing responses, J Biol Chem 277, 41046–59 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracey J. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Udabage, L., Brownlee, G.R., Stern, R. et al. Inhibition of hyaluronan degradation by dextran sulphate facilitates characterisation of hyaluronan synthesis: An in vitro and in vivo study. Glycoconj J 20, 461–471 (2003). https://doi.org/10.1023/B:GLYC.0000038292.71098.35

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GLYC.0000038292.71098.35

Navigation