Skip to main content
Log in

The physiological effects ofheat stress and the role of heat shock proteins in rainbow trout (Oncorhynchus f) red blood cells

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The effects of in vitro thermal stress and the potential role ofheat shock proteins in thermoprotection were examined in the nucleated red blood cells (rbcs) of rainbow trout (Oncorhynchusmykiss). Oxygen consumption, a general indicator of cellular metabolism, was maintained in trout rbcs until 30 °C, but was markedly reduce by 35 °C. Subsequent experiments were then conducted which involved exposing rbcs to 30 °C to determine which physiological variables might be compromised by an extendedheat stress. Although this temperature challenge caused an induction of Hsp 70 mRNA, and a significant reduction in the amount of oxygen bound to hemoglobin, carbonic anhydrase (CA) activity was unaffected by an 8 h, 30 °C exposure.heat stress also caused a rise in methemoglobin formation, but the increase in rbc methemoglobin concentration did not appear to be a stimulus for Hsp 70 induction. Rbc oxygen consumption, CA activity and hemoglobin/oxygen binding ability were unaltered when hsp synthesis was inhibited by the translational inhibitor, cycloheximide. These results indicate that hsps do not have a role in protecting rbc metabolism or the function of important rbc proteins, such as hemoglobin and CA. Extended 30 °Cheat stress did cause a significant leakage of potassium from the rbcs, which appeared to be intensified in the presence of cycloheximide. These latter results suggest that hsps may play a limited role in preserving rbc membrane integrity and/or ionoregulatory processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albers, C., Goetz, K.-H. and Hughes, G.M. 1983. Effect of acclimation temperature on intraerythrocytic acid-base balance and nucleoside triphosphates in the carp, Cyprinus carpio. Respir. Physiol. 54: 145–159.

    Article  PubMed  Google Scholar 

  • Becker, J. and Craig, E.A. 1994.heat-shock proteins as molecular chaperones. Eur. J. Biochem. 219: 11–23.

    PubMed  Google Scholar 

  • Betke, K. and Savelsberg, W. 1950. Stufenphotometrische hämoglobinstimmung mittels cyanhämoglobin. Biochem. Z. 320, 431–439.

    PubMed  Google Scholar 

  • Bishop, C. 1961. Changes in the nucleotides of stored or incubated human blood. Transfusion 2: 408–412.

    Google Scholar 

  • Booth, R.K., Kieffer, J.D., Davidson, K., Bielak, A.T. and Tufts, B.L. 1995. Effects of late-season catch and release angling on anaerobic metabolism, acid base status, survival, and gamete viability in wild Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 52: 283–290.

    Google Scholar 

  • Bosch, T.C.G., Krylow, S.M., Bode, H.R. and Steele, R.E. 1988. Thermotolerance and synthesis ofheat shock proteins: these responses are present in Hydra attenuatebut absent in Hydra oligactis. Proc. Natl. Acad. Sci. 85: 7927–7931.

    PubMed  Google Scholar 

  • Boutilier, R.G. and Ferguson, R.A. 1989. Nucleated red cell function: metabolism and pH regulation. Can. J. Zool. 67: 2986–2993.

    Google Scholar 

  • Boutilier, R.G., Heming, T.A. and Iwama, G.K. 1984. Appendix: physicochemical parameters for use in fish respiratory physiology. In: Fish Physiology, vol. X, pp. 403–430. Edited by W.S. Hoar and D.J. Randall. Academic Press, London.

    Google Scholar 

  • Brinkman, R., Margaria, R., Meldrum, N.U. and Roughton, F.J.W. 1932. The CO2 catalyst present in blood. J. Physiol. 75: 3–4.

    Google Scholar 

  • Burdon, R.H. and Cutmore, C.M.M. 1982. Humanheat shock gene expression and the modulation of plasma membrane Na+, K+-ATPase activity. FEBS Let. 140(1): 45–48.

    Article  Google Scholar 

  • Cameron, J.N. 1971. Methemoglobin in erythrocytes of rainbow trout. Comp. Biochem. Physiol. 40A: 743–749.

    Google Scholar 

  • Chomczynski, P. and Sacchi, N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analyt. Biochem. 162: 156–159.

    PubMed  Google Scholar 

  • Coote, P.J., Jones, M.V., Seymour, I.J., Rowe, D.L., Ferdinando, D.P., McArthur, A.J. and Cole, M.B. 1994. Activity of the plasma membrane H+-ATPase is a key physiological determinant of thermotolerance in Saccharomyces cerevisiae. Microbiol. 140(8): 1881–1890.

    Google Scholar 

  • Currie, S. and Tufts, B.L. 1997. Synthesis of stress protein 70 (Hsp70) in rainbow trout (Oncorhynchusmykiss) red blood cells. J. Exp. Biol. 200, 607–614.

    PubMed  Google Scholar 

  • Currie, S., Moyes, C.D. and Tufts, B.L. 2000. The effects ofheat shock and acclimation temperature on hsp70 and hsp30 mRNA expression in rainbow trout: in vivoand in vitrocomparisons. J. Fish Biol. 56: 398–408.

    Article  Google Scholar 

  • Dey, I., Szegletes, T., Buda, C.S., Nemcs, K. J. and Farkas, T. 1993. Fish erythrocytes as a tool to study temperature-induced responses in plasma membranes. Lipids 28: 743–746.

    Google Scholar 

  • Dyer, S.D., Dickson, K.L., Zimmerman, E.G. and Sanders, B.M. 1991. Tissue-specific patterns of synthesis ofheat-shock proteins and thermal tolerance of the fathead minnow (Pimephales promelas). Can. J. Zool. 69: 2021–2027.

    Google Scholar 

  • Feder, M.E. and Hofmann,G.E. 1999.heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Ann. Rev. Physiol. 61: 243–282.

    Article  Google Scholar 

  • Ferguson, R.A., Tufts, B.L. and Boutilier, R.G. 1989. Energy metabolism in trout red cells: consequences of adrenergic stimulation in vivoand in vitro. J. Exp. Biol. 143: 133–147.

    PubMed  Google Scholar 

  • Freeman, M.L., Borrelli, M.J., Syed, K., Senisterra, G., Stafford, D.M. and Lepock, J.R. 1995. Characterization of a signal generated by oxidation of protein thiols that activates theheat shock transcription factor. J. Cell. Physiol. 164: 356–366.

    PubMed  Google Scholar 

  • Gabbianelli, R., Falcioni, G., Mazzanti, L., Bertoli, E. and Zolese, G. 1996. Seasonal variations of physical and biochemical membrane properties in trout erythrocytes (Salmo irideus). Comp. Biochem. Physiol. B 114: 275–279.

    Google Scholar 

  • Gething, M.-J. and Sambrook, J. 1992. Protein folding in the cell. Nature 355: 33–45.

    Article  PubMed  Google Scholar 

  • Hartl, F.U. (1996). Molecular chaperones in cellular protein folding. Nature 381: 571–580.

    Article  PubMed  Google Scholar 

  • Hegesh, E., Gruener, N., Cohen, S., Borchkovsky, R. and Shuval, H.I. 1970. A sensitive micromethod for the determination of methemoglobin in the blood. Clin. Chim. Acta 30: 679–682.

    Article  PubMed  Google Scholar 

  • Heisler, N. 1984. Acid-base regulation in fishes. In: Fish Physiology. Vol. XA, pp. 315–401. Edited by W.S. Hoar and D.J. Randall. Academic Press, New York.

    Google Scholar 

  • Henry, R.P. 1991. Techniques for measuring carbonic anhydrase activity in vitro. In: The Carbonic Anhydrases, pp. 119–131. Edited by S.J. Dodgson, R.E. Tashian, G. Gros and N.D. Carter. Plenum Press, New York.

    Google Scholar 

  • Henry, R.P. and Heming, T.A. 1998. Carbonic anhydrase and respiratory gas exchange. In: Fish Respiration, pp. 75–111. Edited by S.F. Perry and B. Tufts. Academic Press, San Diego.

    Google Scholar 

  • Henry, R.P., Tufts, B.L. and Boutilier, R.G. 1993. The distribution of carbonic anhydrase type I and II isozymes in lamprey and trout: possible co-evolution with erythrocyte chloride/bicarbonate exchange. J. Comp. Physiol. 163: 380–388.

    Google Scholar 

  • Hoffman, J.F. 1962. Cation transport and structure of the red blood cell plasma membrane, in Symposium on the plasma membrane. Circulation 26: 1201–1213.

    Google Scholar 

  • Houston, A.H. and Koss, T.F. 1984. Plasma and red cell ionic composition in rainbow trout exposed to progressive temperature increases. J. Exp. Biol. 110: 53–67.

    PubMed  Google Scholar 

  • Houston, A.H. and McCarty, L.S. 1978. Carbonic anhydrase (acetazolamide-sensitive esterase) activity in the blood, gill and kidney of the thermally acclimated rainbow trout, Salmo gairdneri. J. Exp. Biol. 73: 15–27.

    PubMed  Google Scholar 

  • Jensen, F.B., Fago, A. and Weber, R.E. 1998. Hemoglobin structure and function. In: Fish Respiration. S.F. Perry and B. Tufts, eds. Academic Press, San Diego. pp. 1–40.

    Google Scholar 

  • Jensen, F.B., Wang, T. and Brahm, J. 2001. Acute and chronic in-fluence of temperature on red blood cell anion exchange. J. Exp. Biol. 204: 39–45.

    PubMed  Google Scholar 

  • Kaya, C.M. 1978. Thermal resistance of rainbow trout from a permanentlyheated stream and of two hatchery strains. Prog. Fish Cult. 40: 138–142.

    Google Scholar 

  • Keen, A.M., Steele, C. and Houston, A.H. 1989. The circulating erythrocytes of rainbow trout. Comp. Biochem. Physiol. A 94: 699–711.

    Article  Google Scholar 

  • Laemmli, E.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    PubMed  Google Scholar 

  • Lagerspetz, K.Y.H. 1987. Temperature effects on different organization levels in animals. In: Temperature and Animal Cells, pp. 429–449. Edited by K. Bowler and B.J. Fuller. Company of Biologists Ltd, Cambridge.

    Google Scholar 

  • Laursen, J.S., Andersen, N.A. and Lykkeboe, G. 1985. Temperature acclimation and oxygen binding properties of blood of the European eel, Anguilla anguilla. Comp. Biochem. Physiol. A 81: 79–86.

    Article  Google Scholar 

  • Lew, V.L. and Ferreira, H.G. 1978 Calcium transport and the properties of a calcium-activated potassium channel in red cell membranes. In: Current Topics in Membranes and Transport, pp. 218–277. Edited by F. Bonner and A. Kleinzeller. Academic Press, New York.

    Google Scholar 

  • Lionetti, F.J., McKay, J. and Gendron, H. 1968. Retention of shape and metabolism in human erythrocytes. I. Volume, ATP, and monovalent cation interdependence of cells incubated at 37 ?C. Microvasc. Res. 1: 196–209.

    Article  Google Scholar 

  • Liu, H., Lightfoot, R. and Stevens, J.L. 1996. Activation ofheat shock factor by alkylating agents is triggered by glutathione depletion and oxidation of protein thiols. J. Biol. Chem. 271: 4805–4812.

    Article  PubMed  Google Scholar 

  • Lund, S.G., Phillips, M.C.L., Moyes, C.D. and Tufts, B.L. 2000. The effects of cell ageing on protein synthesis in rainbow trout (Oncorhynchusmykiss) red blood cells. J. Exp. Biol. 203: 2219–2228.

    PubMed  Google Scholar 

  • McDuffee, A.T., Senisterra, G., Huntley, S., Lepock, J.R., Sekhar, K.R., Meredith, M.J. and Borrelli, M.J. 1997. Proteins containing non-native disulfide bonds generated by oxidative stress can act as signals for the induction of theheat shock response. J. Cell. Physiol. 171: 143–151.

    Article  PubMed  Google Scholar 

  • Mosser, D.D. and Bols, N.C. 1988. Relationship betweenheatshock protein synthesis and thermotolerance in rainbow trout fibroblasts. J. Comp. Physiol. B 158: 457–467.

    Google Scholar 

  • Nikinmaa, M. and Salama, A. 1998. Oxygen transport in fish. In: Fish Respiration, pp. 141–184. Edited by S.F. Perry and B. Tufts. Academic Press, San Diego.

    Google Scholar 

  • Nikinmaa, M., Tuurala, H. and Soivio, A. 1980. Thermoacclimatory changes in blood oxygen binding properties and gill secondary lamellar structure of Salmo gairdneri. J. Comp. Physiol. B 140: 255–260.

    Google Scholar 

  • Parsell, D.A. and Lindquist, S. 1993. The function ofheat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Ann. Rev. Genet. 27: 437–496.

    Article  PubMed  Google Scholar 

  • Parsell, D.A. and Lindquist, S. 1994.heat shock proteins and stress tolerance. In: The Biology ofheat Shock Proteins and Molecular Chaperones, pp. 457–494. Edited by R.I. Morimoto, A. Tissieres, and C. Georgopoulos. Cold Spring Harbor Press, New York.

    Google Scholar 

  • Phillips, M.C.L., Moyes, C.D. and Tufts, B.L. 2000. The effects of cell aging on metabolism in rainbow trout (Oncorhynchusmykiss) red blood cells. J. Exp. Biol. 203: 1039–1045.

    PubMed  Google Scholar 

  • Powell, M.D. and Perry, S.F. 1997. Respiratory and acid-base pathophysiology of hydrogen peroxide in rainbow trout (OncorhynchusmykissWalbaum). Aquat. Toxicol. 37: 99–112.

    Article  Google Scholar 

  • Rahn, H. and Baumgardner, F.W. 1972. Temperature and acid-base regulation in fish. Respir. Physiol. 14: 171–182.

    Article  PubMed  Google Scholar 

  • Raynard, R.S. and Cossins, A.R. 1991. Homeoviscous adaptation and thermal compensation of sodium pump of trout erythrocytes. Am. J. Physiol. 260: R916–R924.

    PubMed  Google Scholar 

  • Roberts, J.L. 1973. Effects of thermal stress on gill ventilation and heart rate in fishes. In: Response of Fish to Environmental Changes, pp. 64–85. Edited by W. Chavin. Springfield, IL.

    Google Scholar 

  • Sanchez, Y. and Lindquist, S. 1990. Hsp104 required for induced thermotolerance. Science 248: 1112–1115.

    PubMed  Google Scholar 

  • Schmidt-Nielsen, K. 1990. Animal Physiology: Adaptation and Environment, 4th ed. Cambridge University Press, Cambridge. pp. 218–221.

    Google Scholar 

  • Schurmann, H. Steffensen, J.F. and Lomholt, J.P. 1991. The influence of hypoxia on the preferred temperature of rainbow trout Oncorhynchusmykiss. J. Exp. Biol. 157: 75–86.

    Google Scholar 

  • Smith, M.W. and Ellory, J.C. 1971. Temperature-induced changes in sodium transport and Na+/K+-ATPase activity in the intestine of goldfish (Carassius auratusL.). Comp. Biochem. Physiol. A 39: 209–218.

    Article  Google Scholar 

  • Smith, T.R., Tremblay, G.C. and Bradley, T.M. 1999. Characterization of theheat shock protein response of Atlantic salmon (Salmo salar). Fish Physiol. Biochem. 20: 279–292.

    Article  Google Scholar 

  • Speckner, W., Schindler, J.F. and Albers, C. 1989. Age-dependent changes in volume and haemoglobin content of erythrocytes in the carp (Cyprinus carpioL.). J. Exp. Biol. 141: 133–149.

    PubMed  Google Scholar 

  • Tucker, V.A. 1967. Method for oxygen content and dissociation curves on microlitre blood samples. J. Appl. Physiol. 23: 410–414.

    PubMed  Google Scholar 

  • Ushakov, B. 1964. Thermostability of cells and proteins of poikilotherms and its significance in speciation. Physiol. Rev. 44: 518–560.

    PubMed  Google Scholar 

  • van Kampen, E.J. and Zijlstra, W.G. 1961. Standardization of hemoglobinometry. II. The hemoglobincyanide method. Clin. Chim. Acta 6: 538–544.

    Article  PubMed  Google Scholar 

  • Wedemeyer, G. A. and Yasutake, W.T. 1977. Clinical methods for the assessment of the effects of environmental stress on fish health. Technical Paper 89. U.S. Fish and Wildlife Service.

  • Wood, C.M., Walsh, P.J., Thomas, S. and Perry, S.F. 1990. Control of red blood cell metabolism in rainbow trout after exhaustive exercise. J. Exp. Biol. 154: 491–507.

    PubMed  Google Scholar 

  • Wu, B.S., Walker, V.K. and Robertson, R.M. 2001.heat shockinduced thermoprotection of action potentials in the locust flight system. J. Neurobiol. 49(3): 188–199.

    Article  PubMed  Google Scholar 

  • Wynn, R.M., Davie, J.R., Cox, R.P. and Chuang, D.T. 1994. Molecular chaperones:heat shock proteins, foldases, and matchmakers. J. Lab. Clin. Med. 124: 31–36.

    PubMed  Google Scholar 

  • Yingst, D.R. and Hoffman, J.F. 1984. Ca-induced K transport in human red blood cell ghosts containing arsenazo. III. Transmembrane interactions of Na, K, and Ca and the relationship to the functioning Na-K pump. J. Gen. Physiol. 83: 19–45.

    Article  PubMed  Google Scholar 

  • Zaric, J., Glišin, V. and Popovic, Z. 1998. Evidence for HSP70-like protein in the RBC membrane of the hereditarily anemic Belgrade laboratory (b/b) rat. Mol. Cell. Biochem. 178: 119–125.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lund, S., Tufts, B. The physiological effects ofheat stress and the role of heat shock proteins in rainbow trout (Oncorhynchus f) red blood cells. Fish Physiology and Biochemistry 29, 1–12 (2003). https://doi.org/10.1023/B:FISH.0000035891.54116.34

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:FISH.0000035891.54116.34

Navigation