Skip to main content
Log in

A Comparative Study of the Effects of Metal Contamination on Collembola in the Field and in the Laboratory

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

We examined the species diversity and abundance of Collembola at 32 sampling points along a gradient of metal contamination in a rough grassland site (Wolverhampton, England), formerly used for the disposal of metal-rich smelting waste. Differences in the concentrations of Cd, Cu, Pb and Zn between the least and most contaminated part of the 35 metre transect were more than one order of magnitude. A gradient of Zn concentrations from 597 to 9080 μg g−1 dry soil was found. A comparison between field concentrations of the four metals and previous studies on their relative toxicities to Collembola, suggested that Zn is likely to be responsible for any ecotoxicological effects on springtails at this site. Euedaphic (soil dwelling) Collembola were extracted by placing soil cores into Tullgren funnels and epedaphic (surface dwelling) species were sampled using pitfall traps. There was no obvious relationship between the total abundance, or a range of commonly used diversity indices, and Zn levels in soils. However, individual species showed considerable differences in abundance. Metal “tolerant”(e.g., Ceratophysella denticulata) and metal “sensitive”(e.g., Cryptopygus thermophilus) species could be identified. Epedaphic species appeared to be influenced less by metal contamination than euedaphic species. This difference is probably due to the higher mobility and lower contact with the soil pore water of epedaphic springtails in comparison to euedaphic Collembola. In an experiment exposing the standard test springtail, Folsomia candida, to soils from all 32 sampling points, adult survival and reproduction showed small but significant negative relationships with total Zn concentrations. Nevertheless, juveniles were still produced from eggs laid by females in the most contaminated soils with 9080 μg g−1 Zn. Folsomia candida is much more sensitive to equivalent concentrations of Zn in the standard OECD soil. Thus, care should be taken in extrapolating the results of laboratory toxicity tests on metals in OECD soil to field soils, in which, the biological availability of contaminants is likely to be lower. Our studies have shown the importance of ecotoxicological effects at the species level. Although there may be no differences in overall abundance, sensitive species that are numerous in contaminated sites, and which may play important roles in decomposition (“keystone species”) can be greatly reduced in numbers by pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adis, J. (1979). Problems of interpreting arthropod sampling with pitfall traps. Zoologischer Anzeiger 202, 177–84.

    Google Scholar 

  • Alloway, B.J. (1990). Heavy Metals in Soils. London: Blackie and Son Ltd.

    Google Scholar 

  • Belotti, E. (1998). Assessment of a soil quality criterion by means of a field survey. Appl. Soil Ecol. 10, 51–63.

    Google Scholar 

  • Bengtsson, G. (1998). Which species? What kind of diversity? Which ecosystem function? Some problems in studies of relations between biodiversity and ecosystem function. Appl. Soil Ecol. 10, 191–9.

    Google Scholar 

  • Bengtsson, G. and Rundgren, S. (1984). Ground-living invertebrates in metal-polluted forest soils. Ambio 13, 29–33.

    Google Scholar 

  • Bengtsson, G. and Rundgren, S. (1988). The Gusum case: a brass mill and the distribution of soil Collembola. Can. J. Zool. 66, 1518–26.

    Google Scholar 

  • Berbiers, P., Maelfait, J.P. and Mertens, J. (1989). Evaluation of some sampling methods used to study Collembola (Insecta, Apterygota) in a pasture. Revue d'Écologie et de Biologie du Sol 26, 305–20.

    Google Scholar 

  • Bishop, A.L., McKenzie, H.J., Barchia, I.M. and Spohr, L.J. (1998). Efficacy of insecticides against the Lucerne flea Sminthuris viridis (L.) (Collembola: Smithuridae), and other arthropods in Lucerne. Aust J. Entomol. 37, 40–8.

    Google Scholar 

  • Bressan, M. and Paoletti, M.G. (1997). Leaf litter decomposition and soil microarthropods affected by sulphur dioxide fallout. Land Degrad. Dev. 8, 189–99.

    Google Scholar 

  • Bruce, L.J., McCracken, D.I., Foster, G.N. and Aitken, M.N. (1997). The effects of cadmium and zinc-rich sewage sludge on epigeic Collembola populations. Pedobiologia 41, 167–72.

    Google Scholar 

  • Bruus Pedersen, M., Axelsen, J.A., Strandberg, B., Jensen, J. and Altrill, M. (1999). The impact of a copper gradient on a microarthropod field community. Ecotoxicology 8, 467–83.

    Google Scholar 

  • Bruus Pedersen, M. and Van Gestel, C.A.M. (2001). Toxicity of copper to the collembolan Folsomia fimetaria in relation to the age of soil contamination. Ecotox. and Environ. Safe. 49, 54–9.

    Google Scholar 

  • Bruus Pedersen, M., Van Gestel, C.A.M. and Elmegaard, N. (2000). Effects of copper on the reproduction of two collembolan species exposed through soil, food and water. Environ. Toxicol. Chem. 19, 2579–88.

    Google Scholar 

  • Cancela Da Fonseca, J.P. and Sarkar, S. (1996). On the evaluation of spatial diversity of soil microarthropod communities. Eur. J. Soil Biol. 32, 131–40.

    Google Scholar 

  • Chagnon, M., Paré, D., Hébert, C. and Camiré (2001). Effects of experimental liming on collembolan communities and soil microbial biomass in a southern Quebec sugar maple (Acer saccharum Marsh) stand. Appl. Soil Ecol., 17, 81–90.

    Google Scholar 

  • Chakravorty, P.P. and Joy, V.C. (1990). Ill effects of Monocil (Monocrotophos) on the nontarget soil microarthropods. J. Environ. Biol. 11, 127–36.

    Google Scholar 

  • Chernova, N. M. and Kuznetsova, N. A. (2000). Collembolan community organisation and its temporal predictability. Pedobiologia 44, 451–66.

    Google Scholar 

  • Cole, L.J., McCracken, D.I., Foster, G.N. and Aitken, M.N. (2001). Using Collembola to assess the risks of applying metal-rich sewage sludge to agricultural land in western Scotland. Agr. Ecosyst. Environ. Safe. 83, 177–89.

    Google Scholar 

  • Crommentuijn, T., Doornekamp, A. and Van Gestel, C.A.M. (1997). Bioavailability and ecological effects of cadmium on Folsomia candida (Willem) in an artificial soil substrate as influenced by pH and organic matter. Appl. Soil Ecol. 5, 261–71.

    Google Scholar 

  • Detis, V., Diamantopoulos, J. and Kosmas, C. (2000). Collembolan assemblages in Lesvos, Greece. Effects of differences in vegetation and precipitation. Acta Oecologia 21, 149–59.

    Google Scholar 

  • Dunger, W. and Wanner, M. (2001). Development of soil fauna at mine sites during 46 years after afforestation. Pedobiologia 45, 243–71.

    Google Scholar 

  • Edwards, C.A. and Lofty, J.R. (1974). The invertebrate fauna of the park grass plots. I Soil fauna. Rothamsted Report for 1974 Part 2, 133–54.

  • Fairbrother, A., Glazebrook, P.W., Van Straalen, N. and Tarazona, J.V. (1999). In A. Fairbrother (ed.). Test Methods for Hazard Determination of Metals and Sparingly Soluble Metal Compounds in Soils: Summary of SETAC Pellston workshop. San Lorenzo de EL Escorial, Spain: A publication of SETAC

    Google Scholar 

  • Filser, J. (1991). Sommer-und Wintergesellschaften der epigäischen Collembolen in Hopfengärten unterschiedlicher Bewirtschaftung. Poster zu Verhandlugen der Gesellschaft fü Őkologie 20, 55–9.

    Google Scholar 

  • Filser, J. (1995). Collembola as indicators for long-term effects of intensive management. Acta Zool. Fenn. 196, 326–8.

    Google Scholar 

  • Filser, J., Fromm, H., Nagel, R.F. and Winter, K. (1995). Effects of previous intensive agricultural management on microorganisms and the biodiversity of soil fauna. Plant Soil 170, 123–9.

    Google Scholar 

  • Filser, J., Wittman, R. and Lang, A. (2000). Response types in Collembola towards copper in the environment. Environ. Pollut. 107, 71–8.

    Google Scholar 

  • Fjellberg, A. (1998). The Collembola of Fennoscandinavia and Denmark. Part I. Poduromorpha. Fauna Entomologica Scandinavica, Vol. 35, 184 pp. Leiden: Brill.

    Google Scholar 

  • Fountain, M.T. and Hopkin, S.P. (2001). Continuous monitoring of Folsomia candida (Insecta:Collembola) in a metal exposure test. Ecotox. Environ. Safe. 48, 275–86.

    Google Scholar 

  • Fountain, M. T. and Hopkin, S. P. (2004). Biodiversity of Collembola in urban soils and the use of Folsomia candida to assess soil ''quality''. Ecotoxicology 13, 555–72

    Google Scholar 

  • Fox, C.J.S. (1967). Effects of several chlorinated hydrocarbon insecticides on the springtails and mites of grassland soil. J. Econ. Entomol. 60, 77–9.

    Google Scholar 

  • Fratello, B., Bertolani, R., Sabatini, M.A., Mola, L. and Rassu, M.A. (1985). Effects of atrazine on soil microarthropods in experimental maize fields. Pedobiologia 28, 161–8.

    Google Scholar 

  • French, D. and Lindley, D. (2000). Exploring the data. In T. Sparks (ed.).Stat. Ecotox. (ed.). pp. 33–68. Chichester: John Wiley and Sons Ltd.

    Google Scholar 

  • Ge, Y., Murray, P. and Hendershot, W.H. (2000). Trace metal speciation and bioavailability in urban soils. Environ. Pollut. 107, 137–44.

    Google Scholar 

  • Hågvar, S. (1984). Effects of liming and artificial acid rain on Collembola and Protura in coniferous forest. Pedobiologia 27, 341–54.

    Google Scholar 

  • Hågvar, S. and Abrahamsen, G. (1990). Microarthropoda and Enchytraeidae (Oligochaeta) in a naturally lead-contaminated soil: a gradient study. Environ. Entomol. 19, 1263–77.

    Google Scholar 

  • Haimi, J. and Siirapietikainen, A. (1996). Decomposer animal communities in forest soil along heavy metal pollution gradient. Frese. J. Anal. Chem. 354, 672–5.

    Google Scholar 

  • Holland, J.M., Winder, L. and Perry, J.N. (2000). The impact of dimethoate on the spatial distribution of beneficial arthropods in winter wheat. Ann. Appl. Biol. 136, 93–105.

    Google Scholar 

  • Hopkin, S.P. (1989). Ecophysiology of Metals in Terrestrial Invertebrates. Barking: Elsevier Applied Science.

    Google Scholar 

  • Hopkin, S.P. (1994). Effects of metal pollutants on decomposition processes in terrestrial ecosystems with special reference to fungivorous soil arthropods. In S.M. Ross (ed.). Toxic Metals in Soil-Plant Systems. pp. 303–326. Chichester, England: John Wiley and Sons Ltd.

    Google Scholar 

  • Hopkin, S.P. (1997). Biology of the Springtails (Insecta: Collembola), 330 pp. Oxford University Press.

  • Hopkin, S.P. (2000). A Key to the Springtails of Britain and Ireland, AID GAP (Aids to Identification in Difficult Groups of Animals and Plants), test version, Field Studies Council.

  • Hopkin, S.P. and Spurgeon, D.J. (2001). Forecasting the environmental effects of zinc, the metal of benign neglect in soil ecotoxicology. In P.S. Rainbow, S.P. Hopkin and M. Crane (eds.). Forecasting the Fate and Effects of Toxic Chemicals. Chichester: John Wiley.

    Google Scholar 

  • House, G.J., Worsham, A.D., Sheets, T.J. and Stinner, R.E. (1987). Herbicide effects on soil arthropod dynamics and wheat straw decomposition in North Carolina no-tillage agroecosystem. Biol. Fert. Soils 4, 109–14.

    Google Scholar 

  • Humbert, W. (1974). FrLocalisation, structure et genè se des concré tions minerales dans le mésentéron des Collemboles Tomoceridae (Insecta, Collembola). Zeitschrift für Morphologie der Tiere 78, 93–9.

    Google Scholar 

  • International Organisation for Standardisation (ISO) (1999) Reference number 11267:1999(E) ''Soil Quality-Inhibition of reproduction of Collembola (Folsomia candida) by soil pollutants.''

  • Ishibashi, N., Muraoka, M., Kondo, E., Yamasaki, H., Kai, H., Iwakiri, T. and Nakahara, M. (1978). Effect of annual application of herbicide on nematodes, soil mites and springtails in Satsuma mandarin orchards. Saga Daigaka Nogakubu Iho/Saga Univ. Fac. Agr. Bull. 44, 43–55.

    Google Scholar 

  • Joosse, E.N.G. and Buker, J.B. (1979). Uptake and excretion of lead by litter-dwelling Collembola. Environmental Pollution 18, 235–40.

    Google Scholar 

  • Kaczmarek, M. (1993). Collembola. In M. Górny and L. Grüm (eds.). Methods in Soil Zoology. pp. 247–53. London: Elsevier.

    Google Scholar 

  • Kampichler, C., Bruckner, A., Baumgarten, A., Berthold, A. and Zechmeister-Boltenstern, S. (1999). Field mesocosms for assessing biotic processes in soils: how to avoid side effects. E. J. Soil Biol. 35, 135–43.

    Google Scholar 

  • Kelly, T.M. and Curry, J.P. (1985). Studies on the arthropod fauna of a winter wheat crop and its response to the pesticide methiocarb. Pedobiologia 28, 413–21.

    Google Scholar 

  • Kopeszki, H. (1992). A first attempt using soil dwelling collembolan species Folsomia candida (Willem) and Heteromurus nitidus (Templeton) as an active biomarker in a beech forest ecosystem. Zoologischer Anzeiger 288, 82–90.

    Google Scholar 

  • Krebs, C.J. (1999). Ecological Methodology 2nd edn. USA: Addison-Welsey, Educational Publishers

    Google Scholar 

  • Kronshage, J. (1992). Experimente zur Wirkung von Bleiverbindungen und Sauren auf Collembolen (Insecta, Collembola). Zool. Beitr. 34, 289–311.

    Google Scholar 

  • Kuznetsova, N.A. and Potapov, M.B. (1997). Changes in structure of communities of soil springtails (Hexapoda: Collembola) under industrial pollution of the South Taiga Bilberry pine forests. Russ. J. Ecol. 28, 386–92.

    Google Scholar 

  • Lauga-Reyrel, F. and Deconchat, M. (1999). Diversity within the Collembola community in fragmented coppice forests in south-western France. E. J. Soil Biol. 35, 177–87.

    Google Scholar 

  • Lock, K. and Janssen, C.R. (2001a). Modelling Zinc toxicity for terrestrial invertebrates. Environ. Toxicol. and Chem. 20, 1901–8.

    Google Scholar 

  • Lock, K. and Janssen, C.R. (2001b). Cadmium toxicity for terrestrial invertebrates: Taking soil parameters affecting bioavailability into account. Ecotoxicology 10, 315–22.

    Google Scholar 

  • Loranger, G., Bandyopadhyaya, I., Razaka, B. and Ponge, J. F. (2001). Does soil acidity explain altitudinal sequences in collembolan communities? Soil Biol. Biochem. 33, 381–93.

    Google Scholar 

  • Lübben, B. (1989). Influence of sewage sludge and heavy metals on the abundance of Collembola on two agricultural soils. In R. Dallai (ed). Third International Seminar on Apterygota. pp. 419–28. University of Siena, Siena.

    Google Scholar 

  • Magurran, A.E. (1988). Ecological Diversity And Its Measurement.Cambridge: University Press.

    Google Scholar 

  • McAleece, N. (1997). BioBiversity Professional Beta. The Natural History Museum and The Scottish Association for Marine Science. Devised by P.J.D. Lambshead, G.L.J. Patersen and J.D. Gage.

  • Mebes, K.H. and Filser, J. (1998). Does the species composition of Collembola affect nitrogen turnover. Appl. Soil Ecol. 9, 241–7.

    Google Scholar 

  • Melbourne, B.A. (1999). Bias in the effect of habitat structure on pitfall traps: An experimental evaluation. Aus. J. Ecol. 24, 228–39.

    Google Scholar 

  • Menhinick, E. (1962). Comparison of invertebrate populations of soil and litter of mowed grassland in areas treated and untreated with pesticides. Ecology 43, 556–61.

    Google Scholar 

  • Merian, E. (1962) Metals and their compounds in the Environment. Occurrence, Analysis and Biological Relevance. Cambridge: VCH.

    Google Scholar 

  • Moore, J.C., Snider, R.J. and Robertson, L.S. (1984). Effects of different management practices on Collembola and Acari in corn production systems. I. The effects of no-tillage and atrazine. Pedobiologia 26, 143–52.

    Google Scholar 

  • Moursi, A.A. (1962). The lethal doses of CO2, N2, NH3, and H2S for soil Arthropoda. Pedobiologia 2, 9–14.

    Google Scholar 

  • Murray, P., Ge, Y. and Hendershot, W.H. (2000). Evaluating three trace metal contaminated sites: a field and laboratory investigation. Environ. Pollut. 107, 127–35.

    Google Scholar 

  • Naeem, S., Thompson, L.J., Lawler, S.P., Lawton, J.H. and Woodfin, R.W. (1994). Declining biodiversity can alter the performance of ecosystems. Nature 368, 734–7.

    Google Scholar 

  • Niklasson, M., Petersen, H. and Parker, E.D. (2000). Environmental stress and reproductive mode in Mesaphurura macrochaeta (Tullberginae, Collembola). Pedobiologia 44, 476–8.

    Google Scholar 

  • Nottrot, F., Joosse, E.N.G., and Van Straalen, N.M. (1987). Sublethal effects of iron and manganese soil pollution on Orchesella cincta (Collembola). Pedobiologia 30, 45–53.

    Google Scholar 

  • Nüss, D. (1994). Outdoor experiments with monitor-systems: Effects of acid rain, liming and heavy metals on decomposition and Collembola. Zool. Beitr. 35, 121–83.

    Google Scholar 

  • OECD (2000). Draft Document. OECD Guideline for the testing of chemicals. Proposals for a new guideline. Earthworm Reproduction Test (Eisenia fetida/andrei). pp. 1–17.

  • Pawert, M., Triebskorn, R., Graff, S., Berkus, M., Schulz, J. and Köhler, H.R. (1996). Cellular alterations in collembolan midgut cells as a marker of heavy metal exposure: ultrastructure and intracellular metal distribution. Sci. Total Environ. 181, 187–200.

    Google Scholar 

  • Peveling, R., Rafanomezantsoa, J.-J., Razafinirina, R., Tovonkery, R. and Zafimaniry, G. (1999). Environmental impact of the locust control agents fenitrothion, ferutrothion-esfenvalerate and triflumuron on terrestrial arthropods in Madagascar. Crop Prot. 18, 659–76.

    Google Scholar 

  • Rusek, J. and Marshall, V.G. (2000). Impacts of airborne pollutants on soil fauna. Annu. Rev. Ecol. Syst. 31, 395–423.

    Google Scholar 

  • Russell, D.J. and Alberti, G. (1998). Effects of long-term, geogenic heavy metal contamination on soil organic matter and microarthropod communities in particular Collembola. Appl. Soil Ecol. 9, 483–8.

    Google Scholar 

  • Salminen, J. and Haimi, J. (1996). Effects of pentachlorophenol on forest soil: A microcosm experiment for testing ecosystem responses to anthropogenic stress. Biol.Fert. Soils 23, 182–8.

    Google Scholar 

  • Salminen, J. and Haimi, J. (1997). Effects of pentachlorophenol on soil organisms and decomposition in forest soil. J. Appl. Ecol. 34, 101–10.

    Google Scholar 

  • Salminen, J. and Haimi, J. (1998). Responses of the soil decomposer community and decomposition process to the combined stress of pentachlorophenol and acid precipitation. Appl. Soil Ecol. 9, 475–81.

    Google Scholar 

  • Sanocka-Woloszyn, E. and Woloszyn, B. W. (1970). The influence of herbicides on the mesofauna of the soil. Universiteit Gent Faculteit van de Landbouwkundige en Toegepaste Biologische 35, 731–8.

    Google Scholar 

  • Schlatte, G., Kamichler, C. and Kandeler, E. (1998). Do soil microarthropods influence microbial biomass and activity in spruce forest litter? Pedobiologia 42, 205–14.

    Google Scholar 

  • Sjögren, M. (1997). Dispersal rates of Collembola in metal polluted soil. Pedobiologia 41, 506–13.

    Google Scholar 

  • Smit, C.E., Van Beelen, P. and Van Gestel, C.A.M. (1997). Development of zinc bioavailability and toxicity for the springtail Folsomia candida in an experimentally contaminated field plot. Environ. Pollut. 98, 73–80.

    Google Scholar 

  • Smit, C.E. and Van Gestel, C.A.M (1996). Comparison of the toxicity of zinc for the springtail Folsomia candida in arti-ficially contaminated and polluted field soils. Appl. Soil Ecol. 3, 127–36.

    Google Scholar 

  • Smit, C.E. and Van Gestel, C.A.M. (1998). Effects of soil type, prepercolation, and ageing on bioaccumulation and toxicity of zinc for the springtail Folsomia candida. Environ. Chem. 17, 1132–41.

    Google Scholar 

  • Smith, E.P. and Anderson-Cook, C. (2000). Analysis of Field Studies: Regression Analysis. In T. Sparks (ed.) Statistics in Ecotoxicology, Ecological and Environmental Toxicology Series, pp. 119–47. Chichester: John Wiley and Sons Ltd.

    Google Scholar 

  • Southwood, T.R.E. (1978). Ecological Methods With Particular Reference to The Study of Insect Populations. Cambridge: University Printing House.

    Google Scholar 

  • Spurgeon, D.J. (1994). The ecological relevance of the OECD earthworm toxicity test, and its use in establishing soil quality criteria. Ph.D. Thesis, School of Animal and Microbial Sciences, University of Reading.

  • Stork, N.E. and Eggleton, P. (1992). Invertebrates as determinants and indicators of soil quality. A. J. Alternative Agr. 7, 23–32.

    Google Scholar 

  • Strojan, C.L. (1978). The impact of zinc smelter emissions on forest litter arthropods. Oikos 31, 41–6.

    Google Scholar 

  • Therrien, F. (1999). Biodiversity of Collembola in sugar maple (Aceraceae) forests. Can. Entomol. 131, 613–28.

    Google Scholar 

  • Tranvik, L. and Eijsackers, H. (1989). On the advantage of Folsomia fimetarioides over Isotomiella minor (Collembola) in a metal polluted soil. Oecologia 80, 195–200.

    Google Scholar 

  • Van Gestel, C.A.M. and Hensbergen, P.J. (1997). Interaction of Cd and Zn toxicity for Folsomia candida Willem (Collembola: Isotomidae) in relation to bioavailability in soil. Environ. Toxicol. Chem. 16, 1177–86.

    Google Scholar 

  • Van Gestel, C.A.M., Van der Waarde, J.J., Derksen, J.G.M., Van der Hoek, E.E., Veul, M.F.X.W., Bouwens, S., Rusch, B., Kronenburg, R. and Stokman, G.N.M. (2001). The use of acute and chronic bioassays to determine the ecological risk and bioremediation efficiency of oil-polluted soils. Environ. Toxicol. Chem. 20, 1438–49.

    Google Scholar 

  • Vijver, M., Jager, T., Posthuma, L. and Peijnenbury, W. (2001). Impact of metal pools and soil properties on metal accumulation in Folsomia candida (Collembola). Environ. Toxicol. Chem. 20, 712–20.

    Google Scholar 

  • Wardle, D.A., Nicholson, K.S. and Yeates, G.W. (1993). Effect of weed management strategies on some soil-associated arthropods in maize and asparagus ecosystems. Pedobiologia 37, 257–69.

    Google Scholar 

  • Wiles, J.A., and Krogh, P.A. (1998). Tests with the collembolans Isotoma viridis, Folsomia candida and Folsomia fimetaria. In H. Lokke and C.A.M. Van Gestel (ed.). Handbook of Soil Invertebrate Toxicity Tests. pp. 131–56. Chichester: John Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fountain, M., Hopkin, S. A Comparative Study of the Effects of Metal Contamination on Collembola in the Field and in the Laboratory. Ecotoxicology 13, 573–587 (2004). https://doi.org/10.1023/B:ECTX.0000037194.66321.2c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ECTX.0000037194.66321.2c

Navigation