Skip to main content
Log in

Hydrothermally Stable and Catalytically Active Ordered Mesoporous Materials Assembled from Preformed Zeolite Nanoclusters

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Microporous zeolites are widely used commercial catalysts, but their applications are intrinsically limited by their small channel diameters. Recent progress in solving this is used to ordered mesoporous materials such as MCM-41, HMS and SBA-15. These mesoporous materials have pore diameters of 30–60 Å and exhibit catalytic properties for the catalytic conversion of bulky reactants, but unfortunately, when compared with microporous zeolites, the catalytic activity and hydrothermal stability are relatively low, which severely hinders their practical applications. The relatively low catalytic activity and hydrothermal stability can be attributed to the amorphous nature of the mesoporous walls. We review here that the assembly of preformed zeolite precursors with surfactants can synthesize a series of ordered mesoporous materials, which include (1) strongly acidic and hydrothermally stable mesoporous aluminosilicates synthesized in alkaline media; (2) strongly acidic and hydrothermally stable mesoporous aluminosilicates synthesized in strongly acidic media; (3) hydrothermally stable mesoporous titanosilicates with catalytically active titanium species in oxidations; (4) hydrothermally stable mesoporous ferrisilicates. This work would open a door for the industrial application of mesoporous materials as catalysts for large molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli and J.S. Beck,Nature 352 (1992)710.

    Article  Google Scholar 

  2. A. Corma, Chem.Rev. 97 (1997) 2373.

    Article  PubMed  Google Scholar 

  3. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B.F. Chmelka and G.D. Stucky, Science 279 (1998) 548.

    Article  PubMed  Google Scholar 

  4. S.S. Kim, W. Zhang and T.J. Pinnavaia, Science 282 (1998 )1032.

    Article  Google Scholar 

  5. R. Ryoo, J.M. Kim and C.H. Shin, J.Phys.Chem. 100 (1996) 17718.

    Article  Google Scholar 

  6. R. Ryoo, S. Jun, J.M. Kim and M.J. Jim, Chem.Commun. (1997) 2225.

  7. R. Mokaya and W. Jones, Chem.Commun. (1997) 2185.

  8. R. Mokaya, Angew.Chem.Int.Ed., 38 (1999) 2930.

    Article  Google Scholar 

  9. Q. Zhou, W. Pang, S. Qiu and M. Jia, CN Patent, ZL 93 1 17593.3 (1996).

  10. Q. Zhou, B. Li, S. Qiu and W. Pang, Chem.J.Chin.Univ. 20 (1999) 693.

    Google Scholar 

  11. Y. Liu, W.Z. Zhang and T.J. Pinnavaia, J.Am.Chem.Soc. 122 (2000) 8791.

    Article  Google Scholar 

  12. Y. Liu, W.Z. Zhang and T.J. Pinnavaia, Angew.Chem.Int.Ed. Engl., 40 (2001) 1255.

    Article  PubMed  Google Scholar 

  13. Z. Zhang, Y. Han, L. Zhu, R. Wang, Y Yu, S. Qiu, D. Zhao and F.-S. Xiao, Angew.Chem.Int.Ed.Engl. 40 (2001) 1258.

    Article  PubMed  Google Scholar 

  14. Z. Zhang, Y. Han, F.-S. Xiao, S. Qiu, L. Zhu, R. Wang, B. Zou, H. Sun, Z. Zhang, D. Zhao and W. Yen, J.Am.Chem.Soc., 123 (2001) 5014.

    Article  PubMed  Google Scholar 

  15. Y. Han, Y. Yu and F.-S. Xiao, Chin.J.Chem. 20 (2002) 711.

    Google Scholar 

  16. F.-S. Xiao, Y. Han and S. Qiu, Chem.J.Chin.Univ. 23 (2002) 1847.

    Google Scholar 

  17. F.-S. Xiao, Stud.Surf.Sci.Catal. 135 (2001) 06-P-07.

  18. G. Li, Q.-B. Kan, T.-H. Wu, C.-M. Hou, J.-H. Huang, S.-J. Wu and C. Li, Chem.J. Chinese Univ. 23 (2002)1171.

    Google Scholar 

  19. P.-C. Shih, H.-P. Lin and C.-Y. Mou, Stud.Surf.Sci.Catal. 146 (2003) 557.

    Google Scholar 

  20. J.L. Zheng, Y. Zhang, W. Wei, D. Wu, Y.H. Sun, F. Deng, Q. Luo and Y. Yue, Acta Phys.Chim.Sin. 19 (2003) 907.

    Google Scholar 

  21. Y. Di, Y. Yu, Y.Y. Sun, X.Y. Yang, S. Lin, M.Y. Zhang, S.G. Li and F.-S. Xiao, Micropor.Mesopor.Mater. 62 (2003) 221.

    Article  Google Scholar 

  22. J.N. Watson, A.S. Brown, L.E. Iton and J.W. White, J.Chem. Soc.Faraday Trans. 94 (1998) 2181.

    Article  Google Scholar 

  23. P.E.A. de Moor, T.P.M. Beelen, B.U. Komanschek and R.A. Van Santen, Micropor.Mesopor.Mater. 21 (1998) 263.

    Article  Google Scholar 

  24. P.E.A. de Moor, T.P.M. Beelen and R.A. van Santen, J.Phys. Chem.B. 103 (1999) 1639.

    Article  Google Scholar 

  25. A. Jacobs, E.G. Derouane and J. Weitkamp,Chem.Commun. (1981)591.

  26. K.F.M.G.J. Scholle, W.S. Veeman, P. Frenken and G.P.M. Velden,Appl.Catal.17 (1985)233.

    Article  Google Scholar 

  27. Y. Han, F.-S. Xiao, W. Wu, Y. Sun, X. Meng, D. Li, S. Lin, F. Deng and X. Ai, J.Phys.Chem.B 105 (2001)7963.

    Article  Google Scholar 

  28. Y. Liu and T.J. Pinnavaia,Chem.Mater.14 (2002)3.

    Article  Google Scholar 

  29. Z. Luan, M. Hartmann, D. Zgao, W. Zhou and L. Kevan,Chem. Mater.11 (1999)1621.

    Article  Google Scholar 

  30. Y. Yue, A. Cedeon, J.-L. Bonardet, N. Melosh, J.-B. D'Esinose and J. Fraissard, Chem.Commun.(1999)1697.

  31. Y. Han, S. Wu, Y. Sun, D. Li, F.-S. Xiao, J. Liu and X. Zhang, Chem.Mater.14 (2002)1144.

    Article  Google Scholar 

  32. Y.Y. Sun, Y. Han, L. Yuan, S.Q. Ma, D. Jiang and F.-S. Xiao, J.Phys.Chem.B.107 (2003)1853.

    Article  Google Scholar 

  33. K. Miyazawa and S. Inagaki,Chem.Commun.(2000)2121.

  34. Y. Han, N. Li, L. Zhao, D.F. Li, X.Z. Xu, S. Wu, Y. Di and F.-S. Xiao, J.Phys.Chem.B.107 (2003)7551.

    Article  Google Scholar 

  35. M. Taramasso, G. Perego and B. Notari, US Patent, ((4410501 (1983).

  36. Z. Tuel, Zeolites15 (1995)236.

    Article  Google Scholar 

  37. D.P. Serrano, H.X. Li and M.E. Davis, Chem.Commun.(1992 ) 745–747.

  38. T. Blasco, M.A. Camblor, A. Corma and J. Perez-Pariente, J.Am.Chem.Soc.115 (1993)11806.

    Google Scholar 

  39. F.-S. Xiao, Y. Han, Y. Yu, X.J. Meng, M. Yang and S. Wu, J.Am.Chem.Soc.124 (2002)888.

    Article  PubMed  Google Scholar 

  40. X.-J. Meng, D.-F. Li, X.Y. Yang, Y. Yu, S. Wu, Y. Han, Q. Yang, D.Z. Jiang and F.-S. Xiao, J.Phys.Chem.107 (2003) 8972.

    Google Scholar 

  41. A. Corma, M.T. Navarro and J. Perez Pariente, Chem.Commun. (1994)147.

  42. C. Li, G. Xiong, Q. Xin, J. Liu, P. Ying, Z. Feng, J. Li, W. Yang, Y. Wang, G. Wang, X. Liu, M. Lin, X. Wang and E. Min, Angew.Chem.Int.Ed.38 (1999)2220.

    Article  Google Scholar 

  43. N.-Y. He, S.-L. Bao and Q.-H. Xu, Stud.Surf.Sci.Catal.,105 (1997)85.

    Google Scholar 

  44. B. Echchahed, A. Moen, D. Nicholson and L. Bonneviot, Chem. Mater.,9 (1997)1716.

    Article  Google Scholar 

  45. H. Kosslick, G. Lischke, G. Walther, W. Storek, A. Martin and R. Fricke, Micropor.Mater.9 (1997)13.

    Article  Google Scholar 

  46. Y. Han, X.J. Meng, H.B. Guan, Y. Yu, L. Zhao, X.Z. Xu, X.Y. Yang, S. Wu, N. Li and F.-S. Xiao,Micropor.Mesopor.Mater. 57 (2003)191.

    Article  Google Scholar 

  47. Y. Yu, G. Xiong, C. Li and F.-S. Xiao, J.Catal.194 (2000)487.

    Article  Google Scholar 

  48. F.-S. Xiao, 11th National Catalytic Meeting of China,Plenary Lecture,Hangzhou,China (Nov.2002 14-18).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, FS. Hydrothermally Stable and Catalytically Active Ordered Mesoporous Materials Assembled from Preformed Zeolite Nanoclusters. Catalysis Surveys from Asia 8, 151–159 (2004). https://doi.org/10.1023/B:CATS.0000038533.22189.bf

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CATS.0000038533.22189.bf

Navigation