Skip to main content
Log in

Activity and Selectivity of a Nanostructured CuO/ZrO2 Catalyst in the Steam Reforming of Methanol

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Steam reforming of methanol for production of hydrogen can be carried out over copper based catalyst. In the work presented here, the catalytic properties of a CuO/ZrO2 catalyst (8.5wt%) synthesised by a templating technique were investigated with respect to activity, long term stability, CO formation, and response to oxygen addition to the feed. The results were obtained using a fixed bed reactor and compared to a commercial methanol synthesis catalyst CuO/ZnO/Al2O3. It is shown that, depending on the time on stream, the temporary addition of oxygen to the feed has a beneficial effect on the activity of the CuO/ZrO2 catalyst. After activation, the CuO/ZrO2 catalyst is found to be more active (per copper mass) than the CuO/ZnO/Al2O3 system, more stable during time on stream (measured up to 250h), and to produce less CO. Structural characterisation by means of X-ray powder diffraction (XRD) and X-ray absorption spectroscopy (XAS) reveals that the catalyst (as prepared) consists of crystalline, tetragonal zirconia with small domain sizes (about 60Å) and small/disordered crystallites of CuO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.F. Brown, Int. J. Hydrogen Energy 26 (2001) 381.

    Google Scholar 

  2. J. Agrell, H. Birgersson and M. Boutonnet, J. Power Sources 106 (2002) 249.

    Google Scholar 

  3. S. Velu, K. Suzuki, M.P. Kapoor, F. Ohashi and T. Osaki, Appl. Catal. 213 (2001) 47.

    Google Scholar 

  4. B. Lindström, L.J. Petterson and P.G. Menon, Appl. Catal. 234 (2002) 111.

    Google Scholar 

  5. M.L. Cubeiro and J.L.G. Fierro, Appl. Catal. 168 (1998) 307.

    Google Scholar 

  6. Y. Choi and H.G. Stenger, Appl. Catal. B: Environ. 38 (2002) 259.

    Google Scholar 

  7. W. Ning, H. Shen and H. Liu, Appl. Catal. A: Gen. 211 (2001) 153.

    Google Scholar 

  8. H.A. Gasteiger, N. Markovic, P.N. Ross and E. Cairs, J. Phys. Chem. B 98 (1994) 617.

    Google Scholar 

  9. V.M. Schmidt, P. Brocherhoff, B. Hohlein, R. Menzer and U. Stimming, J. Power Sources 144 (1994) 175.

    Google Scholar 

  10. R.O. Idem and N.N. Bakhshi, Can. J. Chem. Eng. 74 (1996) 288.

    Google Scholar 

  11. J. Agrell, K. Hasselbo, K. Jansson, S.G. Järas and M. Boutonnet, Appl. Catal. A: Gen. 211 (2001) 239.

    Google Scholar 

  12. G.C. Shen, S. Fujita, S. Matsumoto and N. Takezawa, J. Mol. Catal. A: Chem. 124 (1997) 123.

    Google Scholar 

  13. B. Lindström and L.J. Pettersson, Int. J. Hydrogen Energy 26 (2001) 923.

    Google Scholar 

  14. C.J. Jiang, D.L. Trimm and M.S. Wainwright, Appl. Catal. A: Gen. 93 (1993) 245.

    Google Scholar 

  15. B. Lindström and L.J. Pettersson, J. Power Sources 106 (2002) 264.

    Google Scholar 

  16. R.O. Idem and N.N. Bakhshi, Chem. Eng. Sci. 51 (1996) 3697.

    Google Scholar 

  17. J.P. Breen and J.R.H. Ross, Catal. Today 51 (1999) 521.

    Google Scholar 

  18. M. Antonietti and H.-P. Hentze, Colloid Polym. Sci. 274 (1996) 696.

    Google Scholar 

  19. M. Antonietti and H.-P. Hentze, Adv. Mater. 8 (1996) 840.

    Google Scholar 

  20. M. Antonietti, R.A. Caruso, C.G. Göltner and M.C. Weissenberger, Macromolecules 32 (1999) 1383.

    Google Scholar 

  21. H.-P. Hentze and M. Antonietti, Curr. Opin. Solid St. Mater. Sci. 5 (2001) 343.

    Google Scholar 

  22. R.A. Caruso, M. Giersig, F. Willig and M. Antonietti, Langmuir 14 (1998) 6333.

    Google Scholar 

  23. J.H. Schattka, D.G. Shchukin, J. Jia, M. Antonietti and R.A. Caruso, Chem. Mater. 14 (2002) 5103.

    Google Scholar 

  24. T. Ressler, J. Synch. Rad. 5 (1998) 118.

    Google Scholar 

  25. J.J. Rehr, C.H. Booth, F. Bridges and S.I. Zabinsky, Phys. Rev. B 49 (1994) 12347.

    Google Scholar 

  26. R.O. Idem and N.N. Bakhshi, Ind. Eng. Chem. Res. 34 (1995) 1548.

    Google Scholar 

  27. M.M. Günter, T. Ressler, R.E. Jentoft and B. Bems, J. Catal. 203 (2001) 133.

    Google Scholar 

  28. E.D. Guerreiro, O.F. Gorriz, G. Larsen and L.A. Arrúa, Appl. Catal. A 204 (2000) 33.

    Google Scholar 

  29. D.G. Löffler, S.D. McDermott and C.N. Renn, J. Power Sources (2002) 5063

  30. K. Narusawa, M. Hayashida, Y. Kamiya, H. Roppongi, D. Kurashima and K. Wakabayashi, JSAE Rev. 24 (2003) 41.

    Google Scholar 

  31. H. Purnama, T. Ressler, R.E. Jentoft, H. Soerijanto, R. Schlögl and R. Schomäcker, Appl. Catal. A., in press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ressler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purnama, H., Girgsdies, F., Ressler, T. et al. Activity and Selectivity of a Nanostructured CuO/ZrO2 Catalyst in the Steam Reforming of Methanol. Catalysis Letters 94, 61–68 (2004). https://doi.org/10.1023/B:CATL.0000019332.80287.6b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CATL.0000019332.80287.6b

Navigation