Skip to main content
Log in

Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: A unifying concept in stress response biology

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Exposure of eukaryotic cells to ionizing radiation (IR) results in the immediate formation of free radicals that last a matter of milliseconds. It has been assumed that the subsequent alterations in multiple intracellular processes following irradiation is due to the initial oxidative damage caused by these free radicals. However, it is becoming increasingly clear that intracellular metabolic oxidation/reduction (redox) reactions can be affected by this initial IR-induced free radical insult and may remain perturbed for minutes, hours, or days. It would seem logical that these cellular redox reactions might contribute to the activation of protective or damaging processes that could impact upon the damaging effects of IR. These processes include redox sensitive signaling pathways, transcription factor activation, gene expression, and metabolic activities that govern the formation of intracellular oxidants and reductants. The physiological manifestations of these radiation-induced alterations in redox sensitive processes have been suggested to contribute to adaptive responses, bystander effects, cell cycle perturbations, cytotoxicity, heat-induced radiosensitization, genomic instability, inflammation, and fibrosis. While a great deal is known about the molecular changes associated with the initial production of free radicals at the time of irradiation, the contribution of perturbations in redox sensitive metabolic processes to biological outcomes following exposure to IR is only recently becoming established. This review will focus on evidence supporting the concept that perturbations in intracellular metabolic oxidation/reduction reactions contribute to the biological effects of radiation exposure as well as new concepts emerging from the field of free radical biology that may be relevant to future studies in radiobiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Altman KI, Gerber GB, Okada S: Radiation Biochemistry. Academic Press, New York, 1970

    Google Scholar 

  2. Arena V: Ionizing Radiation and Life. The C.V. Mosby Company, St. Louis, 1971

    Google Scholar 

  3. Oberley LW, Lindgren AL, Baker SA, Stevens RH: Superoxide ion as the cause of the oxygen effect. Radiat Res 68: 320–328, 1976

    PubMed  Google Scholar 

  4. Biaglow JE, Mitchell JB, Held K: The importance of peroxide and superoxide in the X-ray response. Int J Radiat Oncol Biol Phys 22: 665–669, 1992

    PubMed  Google Scholar 

  5. Hall EJ: Radiobiology for the Radiologist. Lippincott Williams and Wilkins, Philadelphia, 2000

    Google Scholar 

  6. Chiu SM, Xue LY, Friedman LR, Oleinick NL: Copper ion-mediated sensitization of nuclear matrix attachment sites to ionizing radiation. Biochemistry 32: 6214–6219, 1993

    PubMed  Google Scholar 

  7. Petkau A, Chelack WS, Pleskach SD: Protection of postirradiated mice by superoxide dismutase. Int J Radiat Biol 29: 297–299, 1976

    Google Scholar 

  8. Biaglow JE, Clark EP, Epp ER, Morse-Guadio M, Varnes ME, Mitchell JB: Nonprotein thiols and the radiation response of A549 human lung carcinoma cells. Int J Radiat Biol 44: 489–495, 1983

    Google Scholar 

  9. Biaglow JE, Varnes ME, Clark EP, Epp ER: The role of thiols in cellular response to radiation and drugs. Radiat Res 95: 437–455, 1983

    PubMed  Google Scholar 

  10. Mitchell JB, Russo A: The role of glutathione in radiation and drug induced cytotoxicity. Br J Cancer 55: S96–S104, 1987

    Google Scholar 

  11. Tuttle SW, Varnes ME, Mitchell JB, Biaglow JE: Sensitivity to chemical oxidants and radiation in CHO cell lines deficient in oxidative pentose cycle activity. Int J Radiat Oncol Biol Phys 22: 671–675, 1992

    PubMed  Google Scholar 

  12. St.Clair DK, Wan XS, Oberley TD, Muse KE, St.Clair WH: Suppression of radiation-induced neoplastic transformaton by overexpression of mitochondrial superoxide dismutase. Mol Carcinogenesis 6: 238–242, 1992

    Google Scholar 

  13. Epperly MW, Epstein CJ, Travis EL, Greenberger JS: Decreased pulmonary radiation resistance of manganese superoxide dismutase (MnSOD)-deficient mice is corrected by human manganese superoxide dismutase-plasmid/Liposome (SOD2-PL) intratracheal gene therapy. Radiat Res 154: 365–374, 2000

    PubMed  Google Scholar 

  14. Vujaskovic Z, Batinic-Haberle I, Rabbani ZN, Feng QF, Kang SK, Spasojevic I, Samulski TV, Fridovich I, Dewhirst MW, Anscher MS: A small molecular weight catalytic metalloporphyrin antioxidant with superoxide dismutase (SOD) mimetic properties protects lungs from radiation-induced injury. Free Radic Biol Med 33(6): 857–863, 2002

    PubMed  Google Scholar 

  15. Ayene IS, Stamato TD, Mauldin SK, Biaglow JE, Tuttle SW, Jenkins SF, Koch CJ: Mutation in the glucose-6-phosphate dehydrogenase gene leads to inactivation of Ku DNA end binding during oxidative stress. J Biol Chem 277: 9929–9935, 2002

    PubMed  Google Scholar 

  16. Oberley LW, St. Clair DK, Autor AP, Oberley TD: Increase in manganese superoxide dismutase activity in the mouse heart after X-irradiation. Arch Biochem Biophys 254: 69–80, 1987

    PubMed  Google Scholar 

  17. Summers RW, Maves BV, Reeves RD, Arjes LJ, Oberley LW: Irradiation increases superoxide dismutase in rat intestinal smooth muscle. Free Radic Biol Med 6: 261–270, 1989

    PubMed  Google Scholar 

  18. Kim SG, Nam SY, Kim CW, Kim JH, Cho CK, Yoo SY: Enhancement of radiation-inducible hepatic glutathione-S-transferases Ya, Yb1, Yb2, Yc1, and Yc2 gene expression by oltipraz: Possible role in radioprotection. Mol Pharmacol 51(2): 225–233, 1997

    PubMed  Google Scholar 

  19. Shimizu T, Iwanaga M, Yasunaga A, Urata Y, Goto S, Shibata S, Kondo T: Protective role of glutathione synthesis on radiation-induced DNA damage in rabbit brain. Cellular & Molecular Neurobiology 18: 299–310, 1998

    Google Scholar 

  20. Guo G, Yan-Sanders Y, Lyn-Cook BD, Wang T, Tamae D, Ogi J, Khaletskiy A, Li Z, Weydert C, Longmate JA, Huang T-T, Spitz DR, Oberley LW, Li JJ: Manganese superoxide dismutase-mediated gene expression in radiation-induced adaptive responses. Mol Cell Biol 23: 2362–2378, 2003

    PubMed  Google Scholar 

  21. Mitchell P: Keilin's respiratory chain concept and its chemiosmotic consequences. Science 206: 1148–1159, 1979

    PubMed  Google Scholar 

  22. Lehninger AL: Lehninger Principals of Biochemistry. Worth Publishers Inc., New York, NY, 2000

    Google Scholar 

  23. Szent-Györgyi A: Electronic Biology and Cancer. Marcel Dekker Inc., New York, NY, 1976

    Google Scholar 

  24. Boveris A, Cadenas E: Production of superoxide radicals and hydrogen peroxide in mitochondria. Superoxide Dismutase:Volume II, L.W. Oberley, ed. CRC Press Inc., Boca Raton, Florida, 1982

    Google Scholar 

  25. Halliwell, Gutteridge: Free Radicals in Biology and Medicine. Oxford University Press Inc., New York, NY, 1989

    Google Scholar 

  26. Esterbauer HH, Zollner H, Schaur RJ: Aldehydes formed by lipid peroxidation: Mechanisms of formation, occurrence, and determination. Membrane Lipid Oxidation. CRC Press Inc., Boca Raton, Florida, pp. 240–268, 1990

    Google Scholar 

  27. Yamamoto Y, Niki E: Role of antioxidants in lipid peroxidation. Membrane Lipid Oxidation. CRC Press Inc., Boca Raton, Florida, pp. 286-301

  28. Gerschman R, Gilbert DL, Nye SW, Dwyer P, Fenn WO: Oxygen poisoning and X-irradiation: A mechanism in common Science 119: 623–626, 1954

    PubMed  Google Scholar 

  29. Jamieson D: Oxygen toxicity and reactive oxygen metabolites in mammals. Free Radic Biol Med 7: 87–108, 1989

    PubMed  Google Scholar 

  30. Harman D: Aging: A theory based on free radical and radiation chemistry. J Gerontol 2: 298–300, 1957

    Google Scholar 

  31. Finkel T, Holbrook NJ: Oxidants, oxidative stress and the biology of aging. Nature 408: 239–247, 2000

    PubMed  Google Scholar 

  32. Oberley LW, Oberley TD, Buettner GR: Cell division in normal and transformed cells: The possible role of superoxide and hydrogen peroxide. Med Hypotheses 7: 21–42, 1981

    PubMed  Google Scholar 

  33. Spitz DR, Sim JE, Ridnour LA, Galoforo SS, Lee YJ: Glucose deprivation-induced oxidative stress in human tumor cells: A fundamental defect in metabolism? Ann NY Acad Sci 899: 349–362, 2000

    PubMed  Google Scholar 

  34. Schafer FQ, Buettner GR: Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30: 1191–1212, 2001

    PubMed  Google Scholar 

  35. Sies H: Oxidative stress: Oxidants and antioxidants. Exp Physiol 82: 291–295, 1997

    PubMed  Google Scholar 

  36. Finkel T, Holbrook NJ: Oxidants, oxidative stress and the biology of aging. Nature 408(6809): 239–247, 2000

    PubMed  Google Scholar 

  37. Oberley LW: Anticancer therapy by overexpression of superoxide dismutase. Antioxidants & Redox Signaling 3(3): 461–472, 2001

    Google Scholar 

  38. Gonzalez-Zulueta M, Ensz LM, Mukhina G, Lebovitz RM, Zwacka RM, Engelhardt JF, Oberley LW, Dawson VL, Dawson TM: Manganese superoxide dismutase protects nNOS neurons from NMDA and nitric oxidemediated neurotoxicity. J Neuroscience 18(6): 2040–2055, 1998

    Google Scholar 

  39. Milgram NW, Head E, Muggenburg B, Holowachuk D, Murphey H, Estrada J, Ikeda-Douglas CJ, Zicker SC, Cotman CW: Landmark discrimination learning in the dog: Effects of age, an antioxidant fortified food, and cognitive strategy. Neuroscience & Biobehavioral Reviews 26(6): 679–695, 2002

    Google Scholar 

  40. Klein EA, Thompson IM, Lippman SM, Goodman PJ, Albanes D, Taylor PR, Coltman C: SELECT: The selenium and vitamin E cancer prevention trial. Urol Oncol 21: 59–65, 2003

    PubMed  Google Scholar 

  41. Martin A: Antioxidant vitamins E and C and risk of Alzheimer's disease. Nutrition Reviews 61(2): 69–73, 2003

    PubMed  Google Scholar 

  42. Bulger EM, Maier RV: An argument for Vitamin E supplementation in the management of systemic inflammatory response syndrome. Shock 19(2): 99–103, 2003

    PubMed  Google Scholar 

  43. Ueda S, Masutani H, Nakamura H, Tanaka T, Ueno M, Yodoi J: Redox control of cell death. Antioxidants & Redox Signaling 4(3): 405–414, 2002

    Google Scholar 

  44. Nakamura H, Nakamura K, Yodoi J: Redox regulation of cellular activation. Ann Rev Immunol 15: 351–369, 1997

    Google Scholar 

  45. Rhee SG, Chang TS, Bae YS, Lee SR, Kang SW: Cellular regulation by hydrogen peroxide. J Am Soc Nephrology

  46. Claiborne A, Mallett TC, Yeh JI, Luba J, Parsonage D: Structural, redox, and mechanistic parameters for cysteine-sulfenic acid function in catalysis and regulation. Adv Protein Chem 58: 215–276, 2001

    PubMed  Google Scholar 

  47. Claiborne A, Yeh JI, Mallett TC, Luba J, Crane EJ, Charrier V, Parsonage D: Protein-sulfenic acids: Diverse roles for an unlikely player in enzyme catalysis and redox regulation. Biochemistry 38(47): 15407–15416, 1999

    PubMed  Google Scholar 

  48. Xiao J, Biaglow JE, Chae-Park HJ, Jin J, Tuel-Ahlgren L, Myers DE, Burkhardt AL, Bolen JB, Uckun FM: Role of hydroxyl radicals in radiation-induced activation of lyn tyrosine kinase in human B-cell precursors. Leukemia & Lymphoma 22(5-6): 421–430, 1996

    Google Scholar 

  49. Sun Yi, Oberley LW: Redox regulation of transcriptional activators. Free Radic Biol Med 21: 335–348, 1996

    PubMed  Google Scholar 

  50. Lee YJ, Galoforo SS, Berns CM, Chen JC, Davis BH, Sim JE, Corry PM, Spitz DR: Glucose deprivation-induced cytotoxicity and alterations in mitogen-activated protein kinase activation are mediated by oxidative stress in multidrug-resistant human breast carcinoma cells. J Biol Chem 273: 5294–5299, 1998

    PubMed  Google Scholar 

  51. Blackburn RV, Spitz DR, Liu X, Galoforo SS, Sim JE, Ridnour LA, Chen JC, Davis BH, Corry PM, Lee YJ: Metabolic oxidative stress activates signal transduction and gene expression during glucose deprivation in human tumor cells. Free Radic Biol Med 26: 419–430, 1999

    PubMed  Google Scholar 

  52. Lee YJ, Galoforo SS, Sim JE, Ridnour LA, Choi J, Forman HJ, Corry PM, Spitz DR: Dominant-negative Jun N-terminal protein kinase (JNK-1) inhibits metabolic oxidative stress during glucose deprivation in human breast carcinoma cells. Free Radic Biol Med 28: 575–584, 2000

    PubMed  Google Scholar 

  53. Goswami PC, Sheren J, Albee LD, Parsian AJ, Sim JE, Ridnour LA, Higashikubo R, Hunt CR, Spitz DR: Cell cycle coupled variation in Topoisomerase II? mRNA is regulated by the 3'-untranslated region: Possible role of redox sensitive protein binding in mRNA stability. J Biol Chem 275: 38384–38392, 2000

    PubMed  Google Scholar 

  54. Song JJ, Rhee JG, Suntharalingam M, Walsh SA, Spitz DR, Lee YJ: Role of glutaredoxin in metabolic oxidative stress: Glutaredoxin as a sensor of oxidative stress mediated by H2O2. J Biol Chem 277(48): 46566–46575, 2002

    PubMed  Google Scholar 

  55. Menon SG, Sarsour EH, Spitz DR, Ryuji Higashikubo, Zhang H, Strum M, Goswami PC: Redox regulation of the G1 to S transition in the mouse embryo fibroblast cell cycle. Cancer Res 63: 2109–2117, 2003

    PubMed  Google Scholar 

  56. Watson WH, Pohl J, Montfort WR, Stuchlik O, Reed MS, Powis G, Jones DP: Redox potential of human thioredoxin-1 and identification of a second dithiol/disulfide motif. J Biol Chem 278: 33408–33415, 2003

    PubMed  Google Scholar 

  57. Hainaut P, Mann K: Zinc binding and redox control of p53 structure and function. Antioxidants & Redox Signaling 3(4): 611–623, 2001

    Google Scholar 

  58. Kroncke KD: Zinc finger proteins as molecular targets for nitric oxide-mediated gene regulation. Antioxidants & Redox Signaling 3(4): 565–575, 2001

    Google Scholar 

  59. Wilcox DE, Schenk AD, Feldman BM, Xu Y: Oxidation of zinc-binding cysteine residues in transcription factor proteins. Antioxidants & Redox Signaling 3(4): 549–564, 2001

    Google Scholar 

  60. Webster KA, Prentice H, Bishopric NH: Oxidation of zinc finger transcription factors: Physiological consequences. Antioxidants & Redox Signaling 3(4): 535–548, 2001

    Google Scholar 

  61. Ignarro LJ: Nitric oxide as a unique signaling molecule in the vascular system: A historical overview. J Physiol & Pharmacol 53(4 Pt 1): 503–514, 2002

    Google Scholar 

  62. Lancaster JR: A tutorial on the diffusibility and reactivity of free nitric oxide. Nitric Oxide 1(1): 18–30, 1997

    PubMed  Google Scholar 

  63. Borek C, Troll W: Modifiers of free radicals inhibit in vitro the oncogenic actions of X-rays, bleomycin, and the tumor promoter 12-O-tetradecanoylphorbol 13-acetate. Proc Natl Acad Sci USA 80(5): 1304–1307, 1983

    PubMed  Google Scholar 

  64. Delanian S, Baillet F, Huart J, Lefaix JL, Maulard C, Housset M: Successful treatment of radiation-induced fibrosis using liposomal Cu/Zn superoxide dismutase: Clinical trial. Radiother Oncol 32: 12–20, 1994

    PubMed  Google Scholar 

  65. Lefaix JL, Delanian S, Leplat JJ, Tricaud Y, Martin M, Nimrod A, Baillet F, Daburon F: Successful treatment of radiation-induced fibrosis using Cu/Zn-SOD and Mn-SOD: An experimental study. Int J Radiat Oncol Biol Phys 35: 305–312, 1996

    PubMed  Google Scholar 

  66. Greenberger JS, Epperly MW, Gretton J, Jefferson M, Nie S, Bernarding M, Kagan V, Guo HL: Radioprotective gene therapy. Current Gene Therapy 3(3): 183–195, 2003

    PubMed  Google Scholar 

  67. Kang SK, Rabbani ZN, Folz RJ, Golson ML, Huang H, Yu D, Samulski TS, Dewhirst MW, Anscher MS, Vujaskovic Z: Overexpression of extracellular superoxide dismutase protects mice from radiation-induced lung injury. Int J Radiat Oncol Biol Phys 57(4): 1056–1066, 2003

    PubMed  Google Scholar 

  68. Zhao W, Spitz DR, Oberley LW Robbins MEC: Redox modulation of the pro-fibrogenic mediator plasminogen activator inhibitor-1. Cancer Res 61: 5537–5543, 2001

    PubMed  Google Scholar 

  69. Azzam EI, de Toledo SM, Spitz DR, Little JB: Oxidative metabolism modulates signal transduction and micronucleus formation in bystander cells from ?-particle-irradiated normal human fibroblasts. Cancer Res 62: 5436–5442, 2002

    PubMed  Google Scholar 

  70. Leach JK, Black SM, Schmidt-Ullrich RK, Mikkelsen RB: Activation of constitutive nitric-oxide synthase activity is an early signaling event induced by ionizing radiation. J Biol Chem 277(18): 15400–15406, 2002

    PubMed  Google Scholar 

  71. Leach JK, Van Tuyle G, Lin PS, Schmidt-Ullrich R, Mikkelsen RB: Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res 61(10): 3894–3901, 2001

    PubMed  Google Scholar 

  72. Mikkelsen RB, Wardman P: Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene 22(37): 5734–5754, 2003

    Google Scholar 

  73. Wu LJ, Randers-Pehrson G, Xu A, Waldren CA, Geard CR, Yu Z, Hei TK: Targeted cytoplasmic irradiation with alpha particles induces mutations in mammalian cells. Proc Natl Acad Sci USA 96(9): 4959–4964, 1999

    PubMed  Google Scholar 

  74. Boveris A: Mitochondrial production of superoxide radical and hydrogen peroxide. Adv Exp Med Biol 78: 67–82, 1977

    PubMed  Google Scholar 

  75. Morgan WF: Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects. Radiat Res 159: 581–596, 2003

    PubMed  Google Scholar 

  76. Buettner GR, Ng C, Oberley LW, Rodgers VG, Schafer FQ: Does MnSOD influence H2O2 production in mitochondria. Free Radic Biol Med 29(supplement 1): S21, 2000

    Google Scholar 

  77. Cecchii G: Function and structure of complex II of the respiratory chain. Annu. Rev. Biochem. 72: 77–109, 2003

    PubMed  Google Scholar 

  78. Hamilton ML, Van Remmen H, Drake JA, Yang H, Guo ZM, Kewitt K, Walter CA, Richardson A: Does oxidative damage to DNA increase with age? Proc Natl Acad Sci USA 98(18): 10469–10474, 2001

    PubMed  Google Scholar 

  79. Lu CY, Lee HC, Fahn HJ, Wei YH: Oxidative damage elicited by imbalance of free radical scavenging enzymes is associated with large-scale mtDNA deletions in aging human skin. Mutation Res 423(1-2): 11–21, 1999

    PubMed  Google Scholar 

  80. Beckman KB, Ames BN: Mitochondrial aging: Open questions. Ann NY Acad Sci 854: 118–127, 1998

    PubMed  Google Scholar 

  81. Hunt CR, Sim JE, Featherstone T, Golden W, Von Kapp-Herr C, Hock RA, Gomez RA, Parsian AJ, Spitz DR: Genomic instability and catalase gene amplification induced by chronic exposure to oxidative stress. Cancer Res 58: 3986–3992, 1998

    PubMed  Google Scholar 

  82. Clutton SM, Townsend KM, Walker C, Ansell JD, Wright EG: Radiation-induced genomic instability and persisting oxidative stress in primary bone marrow cultures. Carcinogenesis 17(8): 1633–1639, 1996

    PubMed  Google Scholar 

  83. Limoli CL, Giedzinski E, Morgan WF, Swarts SG, Jones GD, Hyun W: Persistent oxidative stress in chromosomally unstable cells. Cancer Res 63(12): 3107–3111, 2003

    PubMed  Google Scholar 

  84. Varnes ME: Inhibition of pentose cycle of A549 cells by 6-aminonicotinamide: Consequences for aerobic and hypoxic radiation response and for radiosensitizer action. NCI Monographs (6): 199–203, 1988

  85. Dent P, Yacoub A, Fisher PB, Hagan MP, Grant S: MAPK pathways in radiation responses. Oncogene 22(37): 5885–5896, 2003

    PubMed  Google Scholar 

  86. Watters DJ: Oxidative stress in ataxia telangiectasia. Redox Report 8(1): 23–29, 2003

    PubMed  Google Scholar 

  87. Wei SJ, Botero A, Hirota K, Bradbury CM, Markovina S, Laszlo A, Spitz DR, Yodoi J, Gius D: Thioredoxin nuclear translocation and interaction with redox factor-1 activates the AP-1 transcription factor in response to ionizing radiation. Cancer Res 60: 6688–6695, 2000

    PubMed  Google Scholar 

  88. Bradbury CM, Locke JE, Wei SJ, Rene LM, Karimpour S, Hunt C, Spitz DR, Gius D: Increased activator protein 1 activity as well as resistance to heat-induced radiosensitization, hydrogen peroxide, and cisplatin are inhibited by indomethacin in oxidative stress-resistant cells. Cancer Res 61(8): 3486–3492, 2001

    PubMed  Google Scholar 

  89. Karimpour S, Lou J, Lin LL, Rene LM, Lagunas L, Ma X, Karra S, Bradbury CM, Markovina S, Goswami PC, Spitz DR, Hirota K, Kalvakolanu DV, Yodoi J, Gius D: Thioredoxin reductase regulates AP-1 activity as well as thioredoxin nuclear localization via active cysteines in response to ionizing radiation. Oncogene 21: 6317–6327, 2002

    PubMed  Google Scholar 

  90. Heinloth AN, Shackelford RE, Innes CL, Bennett L, Li L, Amin RP, Sieber SO, Flores KG, Bushel PR, Paules RS: ATM-dependent and-independent gene expression changes in response to oxidative stress, gamma irradiation, and UV irradiation. Radiat Res 160(3): 273–290, 2003

    PubMed  Google Scholar 

  91. Suh YA, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D, Chung AB, Griendling KK, Lambeth JD: Cell transformation by the superoxide-generating oxidase Mox1. Nature 401(6748): 79–82, 1999

    PubMed  Google Scholar 

  92. Li W-G, Miller FJ, Zhang HJ, Spitz DR, Oberley LW, Weintraub NL: H2O2-induced O2-production by a nonphagocytic NAD(P)H oxidase causes oxidant injury. J Biol Chem 276: 29251–29256, 2001

    PubMed  Google Scholar 

  93. Bokoch GM, Knaus UG: NADPH oxidases: Not just for leukocytes anymore! Trends in Biochemical Sciences 28(9): 502–508, 2003

    PubMed  Google Scholar 

  94. Cai H, Griendling KK, Harrison DG: The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends in Pharmacological Sciences 24(9): 471–478, 2003

    PubMed  Google Scholar 

  95. Ohshima H, Tatemichi M, Sawa T: Chemical basis of inflammation-induced carcinogenesis. Arch. Biochem Biophys 417(1): 3–11, 2003

    PubMed  Google Scholar 

  96. Sorescu D, Griendling KK: Reactive oxygen species, mitochondria, and NAD(P)H oxidases in the development and progression of heart failure. Congestive Heart Failure 8(3): 132–140, 2002

    PubMed  Google Scholar 

  97. Azzam EI, Toledo SM, Little JB: Oxidative metabolism, gap junctions and ionizing radiation-induced bystander effect. Oncogene 22: 7050–7057, 2003

    PubMed  Google Scholar 

  98. Emerit I, Garban F, Vassy J, Levy A, Filipe P, Freitas J: Superoxide-mediated clastogenesis and anticlastogenic effects of exogenous superoxide dismutase. Proc Natl Acad Sci USA 93(23): 12799–12804, 1996

    PubMed  Google Scholar 

  99. Wong GH, Elwell JH, Oberley LW, Goeddel DV: Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor. Cell 58(5): 923–931, 1989

    PubMed  Google Scholar 

  100. Xu Y, Greenstock CL, Trivedi A, Mitchel RE: Occupational levels of radiation exposure induce surface expression of interleukin-2 receptors in stimulated human peripheral blood lymphocytes. Radiat Environ Biophys 35(2): 89–93, 1996

    PubMed  Google Scholar 

  101. Weichselbaum RR, Kufe DW, Hellman S, Rasmussen HS, King CR, Fischer PH, Mauceri HJ: Radiation-induced tumor necrosis factor-alpha expression: Clinical application of transcriptional and physical targeting of gene therapy. Lancet Oncol 3(11): 665–671, 2002

    PubMed  Google Scholar 

  102. Tribble DL, Krauss RM, Chu BM, Gong EL, Kullgren BR, Nagy JO, La Belle M: Increased low density lipoprotein degradation in aorta of irradiated mice is inhibited by preenrichment of low density lipoprotein with alpha-tocopherol. J Lipid Res 41(10): 1666–1672, 2000

    PubMed  Google Scholar 

  103. Shadley JD, Afzal V, Wolff S: Characterization of the adaptive response to ionizing radiation induced by low doses of X rays to human lymphocytes. Radiat Res 111(3): 511–517, 1987

    PubMed  Google Scholar 

  104. Wolff S: The adaptive response in radiobiology: Evolving insights and implications. Environmental Health Perspectives 106(Suppl 1): 277–283, 1998

    PubMed  Google Scholar 

  105. Waldren CA: Adaptive response induced by low levels of radiation. Summary and comments. Human & Experimental Toxicology 18(7): 452–453, 1999

    Google Scholar 

  106. Spitz DR, Dewey WC, Li GC: Hydrogen peroxide or heat shock induces resistance to hydrogen peroxide in Chinese hamster fibroblasts. J Cell Physiol 131: 364–373, 1987

    PubMed  Google Scholar 

  107. Sullivan SJ, Roberts RJ, Spitz DR: Replacement of media in cell culture alters oxygen toxicity: Possible role of lipid aldehydes and glutathione transferases in O2 toxicity. J Cell Physiol 147: 427–433, 1991

    PubMed  Google Scholar 

  108. Sullivan SJ, Oberley TD, Roberts RJ, Spitz DR: A stable O2-resistant cell line: Role of lipid peroxidation byproducts in O2-mediated injury. Am J Physiol (Lung Cell Mol Physiol) 262: L748–L756, 1992

    Google Scholar 

  109. Lee AK, Cho CK, Kim MS, Kim SG: Enhanced expression of microsomal epoxide hydrolase and glutathione S-transferase by imidazole correlates with the radioprotective effect. Res Commun Mol Path Pharmacol 108(3-4): 155–165, 2000

    Google Scholar 

  110. Park WY, Hwang CI, Im CN, Kang MJ, Woo JH, Kim JH, Kim YS, Kim JH, Kim H, Kim KA, Yu HJ, Lee SJ, Lee YS, Seo JS: Identification of radiation-specific responses from gene expression profile. Oncogene 21(55): 8521–8528, 2002

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spitz, D.R., Azzam, E.I., Jian Li, J. et al. Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: A unifying concept in stress response biology. Cancer Metastasis Rev 23, 311–322 (2004). https://doi.org/10.1023/B:CANC.0000031769.14728.bc

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CANC.0000031769.14728.bc

Navigation