Skip to main content
Log in

Conversion of Death Signal into Survival Signal by Redox Signaling

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Reperfusion of ischemic myocardium produces reactive oxygen species (ROS) and results in apoptotic cell death and DNA fragmentation. Several redox-sensitive anti- and pro-apoptotic transcription factors including nuclear factor κB (NF-κB) and heterodimeric transcription factor AP-1 progressively and steadily increase in the heart as a function of the duration of ischemia and reperfusion. When the heart is adapted to ischemic stress by repeated short-term ischemia and reperfusion, NF-κB remains high, while AP-1 is lowered to almost baseline value. The anti-apoptotic geneBcl-2 is downregulated in the ischemic/reperfused heart, while it is upregulated in the adapted myocardium. Cardioprotective abilities of the adapted myocardium are abolished when heart is pre-perfused with N-acetyl cysteine to scavenge ROS, suggesting a role of redox signaling. Mammalian heart is protected by several defense systems, which include, among others, the redox-regulated protein thioredoxin. Reperfusion of ischemic myocardium results in the downregulation of thioredoxin 1 (Trx 1) expression, which was upregulated in the adapted myocardium. The increased expression of Trx 1 is completely blocked with an inhibitor of Trx 1, cis-diammine-dichloroplatinum, which also abolished cardioprotection afforded by ischemic adaptation. The cardioprotective role of Trx 1 is further confirmed with transgenic mouse hearts overexpressing Trx 1. The Trx 1 mouse hearts displayed significantly improved post-ischemic ventricular recovery and reduced myocardial infarct size and apoptosis compared to the corresponding wild-type mouse hearts. The results of this study implicate a crucial role of redox signaling in transmitting anti-death signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Maulik, N., Watanabe, M., Engelman, D., Engelman, R. M., and Das, D. K. (1995)Mol. Cell. Biochem.,144, 67–74.

    Google Scholar 

  2. Maulik, N., Engelman, R. M., Rousou, J. A., Flack, J. E., Deaton, D., and Das, D. K. (1999)Circulation,100(Suppl. II), 369–375.

    Google Scholar 

  3. Maulik, N., Yoshida, T., and Das, D. K. (1998)Free Rad. Biol. Med.,24, 869–875.

    Google Scholar 

  4. Herrlich, P., and Bohmer, F. D. (2000)Biochem. Pharmacol.,59, 35041.

    Google Scholar 

  5. Rosette, C., and Karin, M. (1996)Science,274, 1194–1197.

    Google Scholar 

  6. Dalton, T. P., Shertzer, H. G., and Puga, A. (1999)Annu. Rev. Pharmacol. Toxicol.,39, 67–101.

    Google Scholar 

  7. Das, D. K., and Maulik, N. (1994)Meth. Enzymol.,233, 601–610.

    Google Scholar 

  8. Meerson, F. Z., Kagan, V. E., Kozlov, P., Beekina, L. M., and Khipenko, Y. V. (1982)Basic Res. Cardiol.,77, 465–472.

    Google Scholar 

  9. Tosaki, A., Droy-Lefaix, M. T., Pali, T., and Das, D. K. (1993)Free Rad. Biol. Med.,14, 361–370.

    Google Scholar 

  10. Olivetti, G., Abbi, R., Quaini, F., Kajstura, J., Cheng, W., Nitahara, J. A., Quaini, E., Loreto, C. Di, Beltrami, C. A., Krajewski, S., Reed, J. C., and Anversa, P. (1997)New Eng. J. Med.,336, 1131–1141.

    Google Scholar 

  11. Nishio, Y., Kashiwagi, A., Taki, H., Shinozaki, K., Maeno, Y., Kojima, H., Maegawa, H., Haneda, M., Hidaka, H., Yasuda, H., Horiike, K., and Kikkawa, R. (1998)Diabetes,47, 1318–1325.

    Google Scholar 

  12. Das, D. K., and Maulik, N. (1998) inBiological Oxidants and Antioxidants (Packer, L., ed.) ASH Ong AOCS Press, IL, pp. 165–177.

    Google Scholar 

  13. Maulik, N., Yoshida, T., and Das, D. K. (1999)Mol. Cell. Biochem.,196, 13–21.

    Google Scholar 

  14. Das, D. K., and Maulik, N. (1995) inExercise and Oxygen Toxicity (Sen, C. K., Packer, L., and Hanninen, O., eds.) Elsevier Science, Amsterdam.

    Google Scholar 

  15. Kukreja, R. C., and Hess, M. L. (1999) inPathophysiology of Reperfusion Injury (Das, D. K., ed.) CRC Press, Boca Raton, FL, pp. 221–242.

    Google Scholar 

  16. Das, D. K., George, A., Liu, X., and Rao, P. S. (1989)Biochem. Biophys. Res. Commun.,165, 1004–1009.

    Google Scholar 

  17. Halestrap, A. P., Kerr, P. M., Javadov, S., and Woodfield, K. Y. (1998)Biochim. Biophys. Acta,1366, 79–94.

    Google Scholar 

  18. Maulik, N., Watanabe, M., Engelman, D., Engelman, R. M., Kagan, V. E., Kisin, E., Tyurin, V., Cordis, G. A., and Das, D. K. (1995)Am. J. Physiol. (Cell),269, C907–C916.

    Google Scholar 

  19. Sharma, H. S., and Das, D. K. (1997)Mediators Inflamm.,6, 175–184.

    Google Scholar 

  20. Bromme, H. J., and Holz, J. (1996)Mol. Cell. Biochem.,163/164, 261–275.

    Google Scholar 

  21. Beg, A. A., and Baltimore, D. (1996)Science,274, 787–789.

    Google Scholar 

  22. Suzuki, Y. J., and Packer, L. (1993)Biochem. Mol. Biol. Int.,31, 693–700.

    Google Scholar 

  23. Suzuki, Y. J., Aggarwal, B. B., and Packer, L. (1992)Biochem. Biophys. Res. Commun.,189, 1709–1715.

    Google Scholar 

  24. Screck, R., Rieber, P., and Baeuerle, P. A. (1991)EMBO J.,10, 2247–2258.

    Google Scholar 

  25. Das, D. K. (1998) inAdv. Org. Biol. (Das, D. K., ed.) Jay Press, CT.

    Google Scholar 

  26. Cohen, M. V., Liu, Y., Liu, G. S., Wang, P., Cordis, G. A., Das, D. K., and Downey, J. M. (1996)Circulation,94, 1713–1718.

    Google Scholar 

  27. Moraru, I. I., Popescu, L., Maulik, N., Liu, X., and Das, D. K. (1992)Biochim. Biophys. Acta,1139, 148–154.

    Google Scholar 

  28. Eskildensen, K., Helmond, Y. E. G., Gho, B. C. G., Bezstarosti, K., Dekkers, D. H. W., Loe, K. S., and van Heusten, H. (1998)Ann. N.Y. Acad. Sci.,793, 210–225.

    Google Scholar 

  29. Fryer, R. M., Schultz Hsu, J. E., and Gross, G. J. (1998)Am. J. Physiol.,275, H2009–H2015.

    Google Scholar 

  30. Anderson, N. G., Maller, J. I., Tonks, N. K., and Sturgill, T. W. (1990)Nature (Lond.),343, 651–653.

    Google Scholar 

  31. Seger, R., and Krebs, E. G. (1995)FASEB J.,9, 726–735.

    Google Scholar 

  32. Cobb, M. H., and Goldsmith, E. J. (1995)J. Biol. Chem.,270, 14843–14846.

    Google Scholar 

  33. Zu, Y. L., Ai, Y., Gilchrist, A., Maulik, N., Watras, J., Sha'afi, R. I., Das, D. K., and Huang, C. K. (1997)J. Mol. Cell. Cardiol.,29, 2150–2168.

    Google Scholar 

  34. Maulik, N., Watanabe, M., Zu, Y. L., Huang, C. K., Cordis, G. A., Schley, J. A., and Das, D. K. (1996)FEBS Lett.,396, 233–237.

    Google Scholar 

  35. Kyriakis, J. M., Banerjee, P., Nikolakaki, E., Dai, T., Rubie, E. A., Ahmad, M. F., Avruch, J., and Woodgett, J. D. (1994)Nature,369, 156–160.

    Google Scholar 

  36. Maulik, N., Yoshida, T., Zu, Y. L., Sato, M., Banerjee, A., and Das, D. K. (1998)Am. J. Physiol.,275, H1857–H1864.

    Google Scholar 

  37. Sato, M., Cordis, G. A., Maulik, N., and Das, D. K. (2003)Am. J. Physiol., in press.

  38. Benjamin, I. J., McMillan, R., Scholich, K., Mullenix, J. B., Wittpoth, C., Poppleton, H. M., Pierre, S. C., Lindorfer, M. A., and Garrison, J. C. (1999)Science,283, 1328–1331.

    Google Scholar 

  39. Mitchell, M. B., Meng, X., Brown, J., Harken, A. H., and Banerjee, A. (1995)Circ. Res.,76, 73–81.

    Google Scholar 

  40. Dixon, B. S., Sharma, R. V., Dickerson, T., and Fortune, J. (1994)Am. J. Physiol.,266, C1406–C1420.

    Google Scholar 

  41. Sato, M., Engelman, R. M., Rousou, J. A., Flack, J. E., Deaton, D., Cordis, G. A., Maulik, N., and Das, D. K. (1998)Surg. Forum,48, 212–215.

    Google Scholar 

  42. Yazaki, Y., Komuro, I., Yamazaki, T., Tobe, K., Maemura, K., Kadowaki, T., and Nagai, R. (1993)Mol. Cell. Biochem.,119, 11–16.

    Google Scholar 

  43. Henrich, C. J., and Simpson, P. C. (1988)J. Mol. Cell. Cardiol.,20, 1081–1085.

    Google Scholar 

  44. Das, D. K., Maulik, N., Sato, M., and Ray, P. (1999)Mol. Cell. Biol.,196, 59–67.

    Google Scholar 

  45. Maulik, N., Goswami, S., Galang, N., and Das, D. K. (1999)FEBS Lett.,443, 331–336.

    Google Scholar 

  46. McMahon, S. B., and Monroe, J. G. (1992)FASEB J.,62, 2707–2715.

    Google Scholar 

  47. Artuc, M., Karman, D., Jurgovsky, K., and Schadendorf, D. (1997)Anticancer,17, 4359–4370.

    Google Scholar 

  48. Maulik, N., and Das, D. K. (1999)Heart Failure Rev.,4, 165–173.

    Google Scholar 

  49. Hughes, P. E., Alexi, T., Yoshida, T., Schreiber, S. S., and Knusel, B. (1996)Neuroscience,74, 1143–1160.

    Google Scholar 

  50. Miyashita, T., Krajewski, S., Krajewska, Wang, M. H., Lin, K., Liebermann, D., Hoffmann, B., and Reed, J. C. (1994)Oncogene,9, 1799–1805.

    Google Scholar 

  51. Thornberry, N. A., and Lazebnik, Y. (1998)Science,281, 1312–1316.

    Google Scholar 

  52. Clark, A. R., Purdie, C. A., Harrision, D. J., Morris, R. G., Bird, C. C., Hooper, M. L., and Wyllie, A. H. (1993)Nature,362, 849–852.

    Google Scholar 

  53. Williams, G. T., and Smith, C. A. (1993)Cell,74, 777–779.

    Google Scholar 

  54. Nunez, G., London, L., Hockenbery, D., Alexander, M., Mckearn, J. P., and Korsmeyer, S. J. (1999)J. Immunol.,144, 3602–3610.

    Google Scholar 

  55. Maclellan, W. R., and Schneider, M. D. (1997)Circ. Res.,81, 137–144.

    Google Scholar 

  56. Tanaka, M., Inada, T., Fujiwara, H., Ohtani, S., Yamasaki, K., Fujiwara, T., Yokota, R., Sasayama, S., and Doyama, K. (1998)Jap. Circ. J.,62, 512–516.

    Google Scholar 

  57. Kajstura, J., Cheng, W., Rreiss, K., Clark, W. A., Sonnenblick, E. H., Krajewski, S., Reed, J. C., Olivetti, G., and Anversa, P. (1996)Lab. Invest.,74, 86–107.

    Google Scholar 

  58. Galang, N., and Maulik, N. (2003)Nutr. Environ. Interact. (Toxicol.), in press.

  59. Maulik, N., Kagan, V. E., Tyrin, V. A., and Das, D. K. (1998)Am. J. Physiol.,274, H242–H248.

    Google Scholar 

  60. Pang, G., O'Rourke, K., and Dixit, V. M. (1997)J. Biol. Chem.,273, 584–590.

    Google Scholar 

  61. Narula, J., Pandey, P., Arbustini, E., Haider, N., Narula, N., Kolodgie, F. D., Dal Bello, B., Semigran, M. J., Bielsa-Masdeu, A., Dec, G. W., Israels, S., Ballester, M., Virmani, R., Saxena, S., and Kharbanda, S. (1999)Proc. Natl. Acad. Sci. USA,96, 8144–8149.

    Google Scholar 

  62. Holly, T. A., Drincic, A., Byun, Y., Nakamura, S., Harris, K., Klocke, F. J., and Cryns, V. L. (1999)J. Mol. Cell. Cardiol.,31, 1709–1715.

    Google Scholar 

  63. Bialik, S., Cryns, V. L., Drincic, A., Miytata, S., Wollowick, A. L., Srinivasan, A., and Kitsis, R. N. (1999)Circ. Res.,85, 403–414.

    Google Scholar 

  64. Das, D. K., Maulik, N., and Moraru, I. I. (1995)J. Mol. Cell. Cardiol.,27, 181–193.

    Google Scholar 

  65. Hanada, H., Kashiwagi, A., Takehara, Y., Kanno, T., Yabuki, M., Sasaki, J., Inoue, M., and Utsumi, K. (1997)Free Rad. Biol. Med.,23, 294–301.

    Google Scholar 

  66. Oishi, K., and Machida, K. (1997)Scand. J. Immunol.,45, 21–27.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, D.K., Maulik, N. Conversion of Death Signal into Survival Signal by Redox Signaling. Biochemistry (Moscow) 69, 10–17 (2004). https://doi.org/10.1023/B:BIRY.0000016345.19027.54

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIRY.0000016345.19027.54

Navigation