Skip to main content
Log in

BAX Inhibitor-1, an ancient cell death suppressor in animals and plants with prokaryotic relatives

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

BAX Inhibitor-1 (BI-1) was originally described as testis enhanced gene transcript in mammals. Functional screening in yeast for human proteins that can inhibit the cell death provoking function of BAX, a proapoptotic Bcl-2 family member, led to functional characterisation and renaming of BI-1. The identification of functional homologues of BI-1 in plants and yeast widened the understanding of BI-1 function as an ancient suppressor of programmed cell death. BI-1 is one of the few cell death suppressors conserved in animals and plants. Computer predictions and experimental data together suggest that BI-1 is a membrane spanning protein with 6 to 7 transmembrane domains and a cytoplasmic C-terminus sticking in the endoplasmatic reticulum and nuclear envelope. Proteins similar to BI-1 are present in other eukaryotes, bacteria, and even viruses encode BI-1 like proteins. BI-1 is involved in development, response to biotic and abiotic stress and probably represents an indispensable cell protectant. BI-1 appears to suppress cell death induced by mitochondrial dysfunction, reactive oxygen species or elevated cytosolic Ca2+ levels. This review focuses on the present understanding about BI-1 and suggests potential directions for further analyses of this increasingly noticed protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Green DR, Reed JC. Mittochondria and apoptosis. Science 1998; 281: 139–1312.

    Google Scholar 

  2. Dickman MB, Park YK, Oltersdorf T, Li W, Clemente T, French R. Abrogation of disease development in plants expressing animal antiapoptotic genes. Proc Natl Acad Sci USA 2001; 98: 6957–6962.

    CAS  PubMed  Google Scholar 

  3. Kawai-Yamada M, Jin L, Yoshinaga K, Hirata A, Uchimiya H. Mammalian Bax-induced plant cell death can be down-regulated by overexpression of Arabidopsis Bax Ihibitor-1 (AtBI-1). Proc Natl Acad Sci USA 2001; 98: 12295–12300.

    CAS  PubMed  Google Scholar 

  4. Lacomme C, Santa Cruz S. Bax-induced cell death in tobacco is similar to the hypersensitive response. Proc Natl Acad Sci USA 1999; 96: 7956–7961.

    CAS  PubMed  Google Scholar 

  5. Mitsuhara I, Malik KA, Miura M, Ohashi, Y. Animal cell-death suppressors Bcl-xL and Ced-9 inhibit cell death in tobacco plants. Curr Biol 1999; 9: 775–778.

    CAS  PubMed  Google Scholar 

  6. del Pozo O, Lam E. Expression of the baculovirus p35 protein in tobacco effects cell death progression and compromises N gene-mediated disease resistance response to tobacco mosaic virus. Mol Plant-Microbe Interact 2003; 16; 485–494.

    CAS  PubMed  Google Scholar 

  7. Lincoln JE, Richael C, Overduin B, Smith K, Bostock R, Gilchrist DG. Expression of the antiapoptotic baculovirus p35 gene in tomato blocks programmed cell death and provides broad-spectrum resistance to disease. Proc Natl Acad Sci USA 2002; 99: 15217–15221.

    Article  CAS  PubMed  Google Scholar 

  8. Hoeberichts FA, Woltering EJ. Multiple mediators of plant programmed cell death: Interplay of conserved cell death mechanisms and plant-specific regulators. BioEssays 2003; 25: 47–57.

    Article  PubMed  Google Scholar 

  9. Krishnamurthy KV, Krishnaraj R, Chozhavendan R, Christopher FS. The programme of cell death in plants and animals—A comparison. Current Science 2000; 79: 1169–1181.

    CAS  Google Scholar 

  10. Lam E, Kato N, Lawton M. Programmed cell death, mitochondria and the plant hypersensitive response. Nature 2001; 411: 848–853.

    CAS  PubMed  Google Scholar 

  11. Walter L, Dirks B, Rothermel E, et al. A novel, conserved gene of the rat that is developementally regulated in the testis. Mamm Genom 1994; 5: 216–221.

    CAS  Google Scholar 

  12. Walter L, Marynen P, Szpirer J, Levan G, Gunther E. Identification of a novel conserved human gene, TEGT. Genomics 1995; 28: 301–304.

    CAS  PubMed  Google Scholar 

  13. Kim JG, Nonneman D, Vallet JL, Christenson RK. Linkage mapping of the porcine testis enhanced gene transcript (TEGT) gene to chromosome 5. Anim Genet 2003; 34: 152–153.

    CAS  PubMed  Google Scholar 

  14. Jean JC, Oakes SM, Joyce-Brady M. The Bax inhibitor-1 gene is differentially regulated in adult testis and developing lung by two alternative TATA-less promoters. Genomics 1999; 57: 201–208.

    CAS  PubMed  Google Scholar 

  15. Grzmil M, Thelen P, Hemmerlein B, et al. Bax inhibitor-1 is overexpressed in prostate cancer and its specific down-regulation by RNA interference leads to cell death in human prostate carcinoma cells. Am J Pathol 2003; 163: 543–552.

    CAS  PubMed  Google Scholar 

  16. Villalva C, Trempat P, Greenland C, et al. Isolation of differentially expressed genes in NPM-ALK-positive anaplastic large cell lymphoma. Br J Haematol 2002; 118: 791–798.

    CAS  PubMed  Google Scholar 

  17. Xu Q, Reed JC. Bax Inhibitor-1, a mammalian apoptosis suppressor identified by functional screening in yeast. Mol Cell 1998; 1: 337–346.

    CAS  PubMed  Google Scholar 

  18. Bolduc N, Brisson LF. Antisense down regulation of NtBI-1 in tobacco BY-2 cells induces accelerated cell death upon carbon starvation. FEBS Lett 2002; 532: 111–114.

    CAS  PubMed  Google Scholar 

  19. Bolduc N, Ouellet M, Pitre F, Brisson LF. Molecular characterization of two plant BI-1 homologues which suppress Bax-induced apoptosis in human 293 cells. Planta 2003; 216: 377–386.

    CAS  PubMed  Google Scholar 

  20. Hückelhoven R, Dechert C, Trujillo M, Kogel KH. Differential expression of putative cell death regulator genes in near-isogenic, resistant and susceptible barley lines during interaction with the powdery mildew fungus. Plant Mol Biol 2001; 47: 739–748.

    PubMed  Google Scholar 

  21. Kawai M, Pan L, Reed JC, Uchimiya H. Evolutionally conserved plant homologue of the Bax inhibitor-1 (BI-1) gene capable of suppressing Bax-induced cell death in yeast. FEBS Lett 1999; 464: 143–147.

    CAS  PubMed  Google Scholar 

  22. Sanchez P, de Torres Zabala M, Grant M. AtBI-1, a plant homologue of Bax inhibitor-1, suppresses Bax-induced cell death in year and is rapidly upregulated during wounding and pathogen challenge. Plant J 2000; 21: 393–399.

    CAS  PubMed  Google Scholar 

  23. Hückelhoven R, Dechert C, Kogel KH. Overexpression of barley BAX Inhibitor-1 induces breakdown of mlo-mediated penetration resistance to Blumeria graminis. Proc Natl Acad Sci USA 2003; 100: 5555–5560.

    PubMed  Google Scholar 

  24. Xu P, Blancaflor EB, Roosinck MJ. In spite of induced multiple defense responses, tomato plants infected with cucumber mosaic virus and D satellite RNA succumb to systemic necrosis. Mol Plant-Microbe Interact 2003; 16: 467–476.

    CAS  PubMed  Google Scholar 

  25. Matsumura H, Nirasawa S, Kiba A, et al. Overexpression of Bax inhibitor suppresses the fungal elicitor-induced cell death in rice (Oryza sativa L.) cells. Plant J 2003; 33: 425–434.

    CAS  PubMed  Google Scholar 

  26. Hückelhoven R, Fodor J, Preis C, Kogel KH. Hypersensitive cell death and papilla formation in barley attacked by the powdery mildew fungus are associated with hydrogen peroxide but not with salicylic acid accumulation. Plant Physiol 1999; 119: 1251–1260.

    PubMed  Google Scholar 

  27. Fingrut O, Flescher E. Plant stress hormones suppress the proliferation and induce apoptosis in human cancer cells. Leukemia 2002; 16: 608–616.

    CAS  PubMed  Google Scholar 

  28. Burns TF, El-Deiry WS. Identification of inhibitors of TRAIL-induced death (ITIDs) in the TRAIL-sensitive colon carcinoma cell line SW480 using a genetic approach. J Biol Chem 2001; 276: 37879–37886.

    CAS  PubMed  Google Scholar 

  29. Perfettini JL, Reed JC, Israel, N, Martinou JC, Dautry-Varsat A, Ojcius DM. Role of Bcl-2 family members in caspase-independent apoptosis during Chlamydia infection. Infect Immum 2002; 70: 55–61.

    CAS  Google Scholar 

  30. Zong WX, Li C, Hatzivassiliou G, et al. Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J Cell Biol 2003 162: 59–69.

    CAS  PubMed  Google Scholar 

  31. Yu LH, Kawai-Yamada M, Naito M, Watanabe K, Reed JC, Uchimiya H. Induction of mammalian cell death by a plant Bax inhibitor. FEBS Lett 2002; 512: 308–312.

    CAS  PubMed  Google Scholar 

  32. Lorrain S, Vailleau F, Balague C, Roby D. Lesion mimic mutants: Keys for deciphering cell death and defense pathways in plants? Trends Plant Sci 2003; 8: 263–271.

    CAS  PubMed  Google Scholar 

  33. Schulze-Lefert P, Vogel J. Closing the ranks to attack by powdery mildew. Trends Plant Sci 2000; 5: 343–348.

    CAS  PubMed  Google Scholar 

  34. Thordal-Christensen H. Fresh insights into processes of non-host resistance. Curr Opin Plant Biol 2003; 6: 351–357.

    CAS  PubMed  Google Scholar 

  35. Shen Q-H, Zhou F, Bieri S, Haizel T, Shirasu K, Schulze-Lefert P. Recognition specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus. Plant Cell 2003; 15: 732–744.

    CAS  PubMed  Google Scholar 

  36. van der Biezen EA, Jones JD. The NB-ARC domain: A novel signaling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol 1998; 8: R226–R227.

    Article  CAS  PubMed  Google Scholar 

  37. Shirasu K, Schulze-Lefert P. Complex formation, promiscuity and multi-functionality: Protein interactions in disease-resistance pathways. Trends Plant Sci 2003; 8: 252–258.

    CAS  PubMed  Google Scholar 

  38. Lee JC, Peter ME. Regulation of apoptosis by ubiquitination. Immunol Rev 2003; 193: 39–47.

    CAS  PubMed  Google Scholar 

  39. Cowling RT, Birnboim HC. Preliminary characterization of the protein encoded by human testis-enhanced gene transcript (TEGT). Mol Membr Biol 1998; 15: 177–187.

    CAS  PubMed  Google Scholar 

  40. Shikano S, Li M. Membrane receptor trafficking: Evidence of proximal and distal zones conferred by two independent endoplasmic reticulum localization signals. Proc Natl Acad Sci USA 2003; 100: 5783–5788.

    CAS  PubMed  Google Scholar 

  41. Alvarez ME. Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Mol Biol 2000; 44: 429–442.

    CAS  PubMed  Google Scholar 

  42. Kampranis SC, Damianova R, Atallah M, Toby G, Kondi G, Tsichlis PN, Makris AM. A novel plant glutathione S-transferase/peroxidase suppresses Bax lethalitiy in yeast. J Biol Chem 2000; 275: 29207–29216.

    CAS  PubMed  Google Scholar 

  43. Moon H, Baek D, Lee B, et al. Soybean ascorbate peroxidase suppresses Bax-induced apoptosis in yeast by inhibiting oxygen radical generation. Biochem Biophys Res Commun 2002; 290: 457–462.

    CAS  PubMed  Google Scholar 

  44. Pan L, Kawai M, Yu LH, et al. The Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP) can function as a dominant suppressor of Bax-induced cell death of yeast. FEBS Lett 2001; 508: 375–378.

    CAS  PubMed  Google Scholar 

  45. Madeo F, Frohlich E, Ligr M, et al. Oxygen stress: A regulator of apoptosis in yeast. J Cell Biol 1999; 145: 757–767.

    CAS  PubMed  Google Scholar 

  46. Levine A, Belenghi B, Damari-Weisler H, Granot D. Vesicle-associated membrane protein of Arabidopsis suppresses Bax-induced apoptosis in yeast downstream of oxidative burst. J Biol Chem 2001; 276: 46284–46289.

    CAS  PubMed  Google Scholar 

  47. Punj V, Chakrabarty AM. Redox proteins in mammalian cell death: An evolutionarily conserved function in mitochondria and prokaryotes. Cell Microbiol 2003; 5: 225–231.

    CAS  PubMed  Google Scholar 

  48. Schumann W. FtsH-a single-chain charonin? FEMS Microbiol Rev 1999; 23: 1–11.

    CAS  PubMed  Google Scholar 

  49. Seo S, Okamoto M, Iwai T, et al. Reduced levels of chloroplast FtsH protein in tobacco mosaic virus-infected tobacco leaves accelerate the hypersensitive reaction. Plant Cell 2000; 12: 917–932.

    CAS  PubMed  Google Scholar 

  50. Aravind L, Dixit VM, Koonin EV. Apoptotic molecular machinery: Vastly increased complexity in vertebrates revealed by genome comparisons. Science 2001; 291: 1279–1284.

    CAS  PubMed  Google Scholar 

  51. Takayama S, Cazals-Hatem DL, Kitada S, et al. Evolutionary conservation of function among mammalian, avian, and viral homologs of the Bcl-2 oncoprotein. DNA Cell Biol 1994; 13: 679–692.

    CAS  PubMed  Google Scholar 

  52. Mulder NJ, Apweiler R, Attwood TK, et al. The InterPro Database, 2003 brings increased coverage and new features. Nucleic Acids Res 2003; 31: 315–318.

    CAS  PubMed  Google Scholar 

  53. Welsh JB, Sapinoso LM, Su AI, et al. Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res 2001; 61: 5974–5978.

    CAS  PubMed  Google Scholar 

  54. van’t Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002, 415: 530–536.

    CAS  PubMed  Google Scholar 

  55. Schmitz R, Cochlovius B, Treitz G, et al. Analysis of the antibody repertoire of astrocytoma patients against antigens expressed by gliomas. Int J Cancer 2002; 98: 73–77.

    PubMed  Google Scholar 

  56. Altschul SF, Madden TL, Schäffer AA, et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 1997; 25: 3389–3402.

    Article  CAS  PubMed  Google Scholar 

  57. Higgins D, Thompson J, Gibson T, et al. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22: 4673–4680.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Hückelhoven.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hückelhoven, R. BAX Inhibitor-1, an ancient cell death suppressor in animals and plants with prokaryotic relatives. Apoptosis 9, 299–307 (2004). https://doi.org/10.1023/B:APPT.0000025806.71000.1c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:APPT.0000025806.71000.1c

Navigation