Skip to main content
Log in

Electronegativities of Metal Atoms in Crystalline Solids

  • Published:
Inorganic Materials Aims and scope

Abstract

A method is proposed for calculating the electronegativity of metal atoms in crystalline solids from the thermochemical and structural parameters of inorganic materials. The electronegativities thus calculated are lower than those for metal atoms in a molecular state; the difference decreases as the oxidation state of the metal becomes higher and vanishes for tetravalent metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Pauling, L., The Nature of the Chemical Bond: IV. The Energy of Single Bonds and the Relative Electronegativity of Atoms, J. Am. Chem. Soc., 1932, vol. 54, no. 9, pp. 3570–3582.

    Google Scholar 

  2. Gurvich, L.V., Karachevtsev, G.V., Kondrat'ev, V.N., et al., Energii razryva khimicheskikh svyazei. Potentsialy ionizatsii i srodstvo k elektronu (Bond Dissociation Energies, Ionization Potentials, and Electron Affinity), Moscow: Nauka, 1974.

    Google Scholar 

  3. Batsanov, S.S., Eksperimental'nye osnovy strukturnoi khimii (Experimental Basis of Structural Chemistry), Moscow: Standarty, 1986.

    Google Scholar 

  4. Batsanov, S.S., Electronegativity Scale and Effective Atomic Charges in Crystalline Compounds, Zh. Neorg. Khim., 1975, vol. 20, no. 10, pp. 2595–2600.

    Google Scholar 

  5. Batsanov, S.S., Polar Component of the Atomization Energy and Electronegativities of Atoms in Crystals, Izv. Akad. Nauk SSSR, Neorg. Mater., 1990, vol. 26, no. 4, pp. 679–682.

    Google Scholar 

  6. Vieillard, P. and Tardy, Y., A New Scale of Electronegativity of Ions in Oxides and Hydroxides, C. R. Acad. Sci., Ser. II, 1989, vol. 308, no. 17, pp. 1539–1542.

    Google Scholar 

  7. Ionov, S.P. and Sevast'yanov, D.V., Relative Chemical Potential and Structural-Thermochemical Model for Metallic Bonding, Zh. Neorg. Khim., 1994, vol. 39, no. 12, pp. 2061–2067.

    Google Scholar 

  8. Urusov, V.S., Concept of Orbital Electronegativities and Its Place in Energetic Crystal Chemistry, Zh. Strukt. Khim., 1994, vol. 35, no. 1, pp. 111–127.

    Google Scholar 

  9. Villars, P., A Three-Dimensional Structural Stability Diagram for 1011 Binary AB2 Intermetallic Compounds, J. Less-Common Met., 1984, vol. 99, no. 1, pp. 33–43.

    Google Scholar 

  10. Pettifor, D., A Chemical Scale for Crystal-Structure Maps, Solid State Commun., 1984, vol. 51, no. 1, pp. 31–34.

    Google Scholar 

  11. Batsanov, S.S., Thermochemical Electronegativities of Metals, Zh. Fiz. Khim., 2000, vol. 74, no. 2, pp. 331–334.

    Google Scholar 

  12. Narai-Sabo, I., Neorganicheskaya kristallokhimiya (Inorganic Crystal Chemistry), Budapest: Hungarian Acad. Sci., 1969.

    Google Scholar 

  13. Batsanov, S.S., Experimental Determination of the Covalent Radii of Elements, Izv. Akad. Nauk, Ser. Khim., 1995, no. 12, pp. 2349–2354.

  14. CRC Handbook of Chemistry and Physics, Lide, D.R., Ed., Boca Raton: CRC, 1995-1996, 76th ed.

    Google Scholar 

  15. Zemann, J., Madelung Numbers for the Theoretical Structure Type with Mutual Trigonal Prismatic Coordination, Acta Crystallogr., Sect. A: Found. Crystallogr., 1991, vol. 47, no. 6, pp. 851–852.

    Google Scholar 

  16. Templeton, D.H., Madelung Constants and Coordination, J. Chem. Phys., 1953, vol. 21, no. 11, pp. 2097–2098.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batsanov, S.S. Electronegativities of Metal Atoms in Crystalline Solids. Inorganic Materials 37, 23–30 (2001). https://doi.org/10.1023/A:1026773024407

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026773024407

Keywords

Navigation