Skip to main content
Log in

Inhibition of platelet function by GSTM1-null human peripheral lymphocytes exposed to benzo(a)pyrene-induced challenge

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Recent epidemiological studies proposed that the glutathione S-transferase (GST) M1-null genotype may contribute to diseases associated with oxidative stress. The genetic polymorphism exhibited by theGSTM1 may be an important factor in risk toward oxidant chemicals. In this study, we investigated the effect ofGSTM1-null genotype in lymphocyte and oxidative stress-dependent inhibition of platelet aggregation. To determine whether GSTM1 deficiency is a genetic determinant of cell toxicity toward oxidant chemicals, lymphocytes were incubatedin vitro with low levels of benzo(a)pyrene (BaP), cumene hydroperoxide (CumOOH), ortrans-stilbene oxide that do not decrease cell viability, and were assessed for oxidative damage and for the lymphocyte-dependent inhibition of platelet response. Malondialdehyde and carbonyl levels, and the oxidation ofcis-parinaric acid, were used as biomarkers of oxidative stress in lymphocytes. Following stimulation by BaP or CumOOH, when peroxidation-dependent changes in these parameters were compared between theGSTM1-null genotype and the positive genotype, no significant differences were found between the two genotypes. On the other hand, preincubation of the lymphocytes with BaP or CumOOH attenuated their inhibitory action on ADP-induced platelet aggregation. However, our results indicate that lymphocytes of individuals with theGSTM1-null genotype have greater inhibitory activity on platelet function after exposure to BaP, but not CumOOH, although they are not more susceptible toin vitro oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berhane K, Widersten M, Engström A, Kozarich JW, Mannervik B. Detoxication of base propenals and other α, β-unsaturated aldehyde products of radical reactions and lipid peroxidation by human glutathione transferases. Proc Natl Acad Sci USA. 1994;91:1480-4.

    Article  PubMed  CAS  Google Scholar 

  • Bierenbaum ML, Fleischmann AI, Stier A, Somol H, Watson PB. Effect of cigarette smoking upon in-vivo platelet function in man. Thromb Res. 1978;12:1051-7.

    Article  PubMed  CAS  Google Scholar 

  • Blache D. Involvement of hydrogen and lipid peroxides in acute tobacco smoking-induced platelet hyperactivity. Am J Physiol. 1995;268:679-85.

    Google Scholar 

  • Boyum A. Isolation of mononuclear cells by one centrifugation of granulacytes by combining centrifugation and sedimentation. Scand J Clin Lab Invest. 1968;(supplement 21):77-90.

  • Bykowska K, Kaczanowska J, Karpowicz M, Stachurska J, Kopec M. Effect of neutral proteasas from blood leukocytes on human platelets. Thromb Haemost. 1983;50:768-72.

    PubMed  CAS  Google Scholar 

  • Church DF, Pryor WA. Free-radical chemistry of cigarette smoke and its toxicological implications. Environ Health Perspect. 1985;64:111-26.

    PubMed  CAS  Google Scholar 

  • Griffin OW. Determination of glutathione and glutathione disulfide using glulathione reductase and 2-vinylpiridine. Anal Biochem. 1980;106:207-12.

    Article  Google Scholar 

  • Harrison DJ, Cantlay AM, Rae F, Lamb D, Smith CA. Frequency of glutathione S-transferase M1 deletion in smokers with emphysema and lung cancer. Hum Exp Toxicol. 1997;16:356-60.

    Article  PubMed  CAS  Google Scholar 

  • Hayes JD, Pulford DJ. The glutathione S-transferase supergene family: regulation of GST and the contrubution of the isoenzymes to cancer, chemoprotection and drug resistance. Crit Rev Biochem Mol Biol. 1995;30:445-600.

    PubMed  CAS  Google Scholar 

  • Kawabata TT, White KL. Supression of the in vitro humoral response of mouse splenocytes by benzo(a)pyrene metabolites and inhibition of benzo(a)pyrene-induced immunosuppression by alpha-napthoflavine. Cancer Res. 1987;47: 2317-22.

    PubMed  CAS  Google Scholar 

  • Koster JF, Slee RG. Lipid peroxidation of human erythrocyte ghosts induced by organic hydroperoxides. Biochim Biophys Acta. 1983;752:233-9.

    PubMed  CAS  Google Scholar 

  • Kreb R, Brockmöller J, Reum T, Roots I. Deficiency of glutathione S-transferases T1 and M1 as heritable factors of increased cutaneous UV sensitivity. J Invest Dermatol. 1997;108:229-32.

    Article  Google Scholar 

  • Kuypers FA, Van dan Berg JJM, Schalkwijk C, Roelofsen B, Op den Kamp JAF. Parinaric acid as a sensitive fluorescent probe for the determination of lipid peroxidation. Biochim Biophys Acta. 1987;921:266-74.

    PubMed  CAS  Google Scholar 

  • Lu KP, Ramos KS. Identification of genes differentially expressed in vascular smooth muscle cells following benzo(a)pyrene challenge: implications for chemical atherogenesis. Biochem Biophys Res Commun. 1998;253:828-33.

    Article  PubMed  CAS  Google Scholar 

  • Marcus AJ. Eicosanoid interactions between platelets, endothelial cells, and neutrophils. Methods Enzymol. 1990;187: 585-98.

    Article  PubMed  CAS  Google Scholar 

  • Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from nucleated cells. Nucleic Acids Res. 1988;16:1215-6.

    PubMed  CAS  Google Scholar 

  • Mudzinsky SP. Effects of benzo(a)pyrene on concanavallin A-stimulated human peripheral blood mononuclear cells in vitro: inhibition of proliferation but no effects on parameters related to the G1 phase of the cell cycle. Toxicol Appl Pharmacol. 1993;120:179-85.

    Article  Google Scholar 

  • Nielsen PS, de Pater N, Okkels H, Autrup H. Environmental air pollution and DNA adducts in Copenhagen bus drivers-effect of GSTM1 and NAT2 genotypes on adduct levels. Carcinogenesis. 1996;17:1021-7.

    PubMed  CAS  Google Scholar 

  • Norppa H. Cytogenetic markers of susceptibility: influence of polymorphic carcinogen-metabolizing enzymes. Environ Health Perspect. 1997;105(supplement 4):829-35.

    PubMed  CAS  Google Scholar 

  • Onaran I, Ozaydin A, Akbaş F, Gültepe M, Tunç kale A, Ulutin T. Are individuals with glutathione S-transferase GSTT1 null genotype more susceptible to in vitro oxidative damage? J Toxicol Environ Health. 2000;59:15-26.

    Article  CAS  Google Scholar 

  • Pickett CB. Glutathione S-transferases: gene structure, regulation, and biological function. Annu Rev Biochem. 1989;58: 743-64.

    Article  PubMed  CAS  Google Scholar 

  • Poli G, Dianzini MU, Cheeseman KH, Slater TF, Lang J, Esterbauer H. Separation and characterization of aldehydic products of lipid peroxidation stimulated by CCl4 or ADP-iron in isolated rat hepatocytes and rat liver microsomal suspensions. Biochem J. 1985;227:629-38.

    PubMed  CAS  Google Scholar 

  • Pryor WA. Cigarette smoke radicals and the role of free radicals in chemical carcinogenicity. Environ Health Perspect. 1997; 105:875-82.

    PubMed  CAS  Google Scholar 

  • Raunio K, Husgafvel-Pursiainen K, Anttila S, Hietanen E, Hirvonen A, Pelkonen O. Diagnosis of polymorphisms in carcinogen-activating and inactivating enzymes and cancer susceptibility-a review. Gene. 1995;159:113-21.

    Article  PubMed  CAS  Google Scholar 

  • Salvemini D, De Nucci G, Gryglewski RJ, Vane JR. Human neutrophils and mononuclear cells inhibit platelet aggregation by releasing a nitric oxide-like factor. Proc Natl Acad Sci USA. 1989; 86:6328-32.

    Article  PubMed  CAS  Google Scholar 

  • Sarhanis P, Redman C, Perret C, et al. Epithelial ovarian cancer: influence of polymorphism at the glutathione S-transferase GSTM1 and GSTT1 loci on p53 expression. Br J Cancer. 1996;74:1754-61.

    Google Scholar 

  • Seidegard J, Ekström G. The role of human glutathione transferases and epoxide hydrolases in the metabolism of xenobiotics. Environ Health Perspect. 1997;105:791-9.

    PubMed  CAS  Google Scholar 

  • Seidegard J, Pero RW. The hereditary transmission of high glutathione transferase activity towards trans-stilbene oxide in human mononuclear leukocytes. Hum Genet. 1985;69: 66-8.

    Article  PubMed  CAS  Google Scholar 

  • Singhal S S, Saxena M, Ahmad H, Awasthi S. Glutathione S-transferases of human lung: characterization and evaluation of the protective role of the α-class isozymes against lipid peroxidation. Arch Biochem Biophys. 1992;299:232-41.

    Article  PubMed  CAS  Google Scholar 

  • Staal FJT, Anderson MT, Staal GEJ, Herzenberg LA, Gitler C, Herzenberg LA. Redox regulation of signal transduction: tyrosine phosphorylation and calcium flux. Proc Natl Acad Sci USA. 1994;91:3619-22.

    Google Scholar 

  • Strange RC, Lear JT, Fryer AA. Glutathione S-transferase polymorphisms: influence on susceptibility to cancer. Chem Biol Interact. 1998;111-112:351-4.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan PD. Free radicals of benzo(a)pyrene and derivatives. Environ Health Prospect. 1985;64:283-95.

    CAS  Google Scholar 

  • Szeinberg A, Golan R, Ben Ezzer J, Pinhas SI, Kindler D. Glutathione peroxidase activity in various types of blood cells in multiple sclerosis. Acta Neurol Scand. 1981;63:67-75.

    Article  PubMed  CAS  Google Scholar 

  • Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione. Anal Biochem. 1969;27:502-22.

    Article  PubMed  CAS  Google Scholar 

  • Vessey DA, Lee KH. Inactivation of enzymes of the glutathione antioxidant system by treatment of cultured human keratinocytes with peroxides. J Invest Dermatol. 1993;100: 829-33.

    Article  PubMed  CAS  Google Scholar 

  • Whittington AT, Vichai V, Webb GC, Baker RT, Pearson WR, Board PG. Gene structure, expression and chromosomal localization of murine Theta class glutathione mGSTT1-1 Biochem J. 1999;337:141-51.

    Article  PubMed  CAS  Google Scholar 

  • Wiencke JK, Kelsey KT, Lamela RA, Toscano WA. Human glutathione S-transferase deficiency as a marker of susceptibility to epoxide-induced cytogenetic damage. Cancer Res 1990;50:1585-90.

    PubMed  CAS  Google Scholar 

  • Yalç in AS, Sabuncu N, Emerk K. Cumene hydroperoxide-induced chemiluminecence in human erythrocytes: effect of antioxidants and sulfhydryl compounds. Int J Biochem. 1992;24:499-502.

    Article  Google Scholar 

  • Zhong S, Willie AH, Barnes D, Wolf DR, Spurr NK. Relationship between the GSTM1 genetic polymorphism and susceptibility to bladder, breast and colon cancer. Carcinogenesis. 1993;14:1821-4.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onaran, İ., Ozaydin, A., Özdas, Ş.B. et al. Inhibition of platelet function by GSTM1-null human peripheral lymphocytes exposed to benzo(a)pyrene-induced challenge. Cell Biol Toxicol 16, 313–323 (2000). https://doi.org/10.1023/A:1026750431055

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026750431055

Navigation