Skip to main content
Log in

Shear-induced crystallization of polypropylene: Influence of molecular weight

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Three series of isotactic polypropylene characterized by different molecular weights and the same isotactic index have been studied during crystallization under static and shearing conditions. The shear is induced by the displacement of a glass fiber in the molten polymer. The monoclinic α-phase is here formed under shear with a columnar organization at the surface of the glass fiber, and does not appear under static condition. The growth-rate, constant during the shear-induced crystallization experiment, is compared with the result obtained from static crystallization. An important increase of the growth-rate due to the shear flow is observed. This increase depends on the molecular structure. The average molecular weights ―Mw and ―Mz seem to be the most important molecular parameters, for which an excellent correlation is obtained. The increase of these parameters ―Mw and ―Mz leads to a significant enhancement of the growth-rate, which can be multiplied by a factor of 10 in the present conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. W. HAAS and B. MAXWELL, Polym. Eng. Sci. 9 (1969) 225.

    Google Scholar 

  2. K. KOBAYASHI and T. NAGASAWA, J. Macromol. Sci. Phys. B4(2) (1970) 331.

    Google Scholar 

  3. A. WERETA and C. GOGOS, Polym. Eng. Sci. 11 (1971) 19.

    Google Scholar 

  4. A. K. FRITZSCHE, F. P. PRICE and R. D. ULRICH, ibid. 16 (1976) 182.

    Google Scholar 

  5. R. R. LAGASSE and B. MAXWELL, ibid. 16 (1976) 189.

    Google Scholar 

  6. V. TAN and C. GOGOS, ibid. 16 (1976) 512.

    Google Scholar 

  7. R. D. ULRICH and F. P. PRICE, J. Appl. Polym. Sci. 20 (1976) 1077.

    Google Scholar 

  8. C. H. SHERWOOD, F. P. PRICE and R. S. STEIN, J. Polym. Sci. Polym. Symp. 63 (1978) 77.

    Google Scholar 

  9. M. D. WOLKOWICZ, ibid. 63 (1978) 365.

    Google Scholar 

  10. G. EDER and H. JANESCHITZ-KRIEGL, Colloid Polym. Sci. 266 (1988) 1087.

    Google Scholar 

  11. S. LIEDAUER, G. EDER, H. JANESCHITZ-KRIEGL, P. JERSCHOW, W. GEMAYER and E. INGOLIC, Intern. Polym. Process. 8 (1993) 236.

    Google Scholar 

  12. S. LIEDAUER, G. EDER and H. JANESCHITZ-KRIEGL, ibid. 10 (1995) 243.

    Google Scholar 

  13. C. TRIBOUT, Thesis, Ecole des Mines de Paris (Sophia Antipolis), 1993.

  14. C. TRIBOUT, B. MONASSE and J.-M. HAUDIN, Colloid Polym. Sci. 274 (1996) 197.

    Google Scholar 

  15. B. MONASSE, J. Mater. Sci. 30 (1995) 5002.

    Google Scholar 

  16. idem., ibid. 27 (1992) 6047.

    Google Scholar 

  17. F. JAY, Thesis, Ecole des Mines de Paris (Sophia Antipolis), 1996.

  18. F. JAY, J.-M. HAUDIN and B. MONASSE, J. Mater. Sci. 34 (1999) 2089.

    Google Scholar 

  19. C. DUPLAY, B. MONASSE, J.-M. HAUDIN and J.-L. COSTA, Polym. Intern. 48 (1999) 320.

    Google Scholar 

  20. E. DEVAUX and B. CHABERT, Polym. Comm. 32 (1991) 464.

    Google Scholar 

  21. J. L. THOMASON and A. A. VAN ROOYEN, J. Mater. Sci. 27 (1992) 897.

    Google Scholar 

  22. J. VARGA and J. KARGER-KOCSIS, J. Polym. Sci. Polym. Phys. Ed. 34 (1996) 657.

    Google Scholar 

  23. J. VARGA, in “Polypropylene: Structure, Blends and Composites, Vol. 1,” edited by J. Karger-Kocsis (Chapman and Hall, London, 1995) p. 56.

    Google Scholar 

  24. G. NATTA and P. CORRADINI, Nuovo Cimento Suppl. 15 (1960) 40.

    Google Scholar 

  25. S. Z. D. CHENG, J. J. JANIMAK and J. RODRIGUEZ, in “Polypropylene: Structure, Blends and Composites, Vol. 1,” edited by J. Karger-Kocsis (Chapman and Hall, London, 1995) p. 31.

    Google Scholar 

  26. F. J. PADDEN JR and H. D. KEITH, J. Appl. Phys. 30 (1959) 1479.

    Google Scholar 

  27. A. TURNER-JONES, J. M. AIZLEWOOD and D. R. BECKETT, Makromol. Chem. 75 (1964) 137.

    Google Scholar 

  28. D. R. MORROW and B. A. NEWMAN, J. Appl. Phys. 39 (1968) 4944.

    Google Scholar 

  29. P. CORRADINI, V. PETRACCONE and B. PIROZZI, Eur. Polym. J. 19 (1983) 299.

    Google Scholar 

  30. C. TZOGANAKIS, J. VLACHOPOULOS and A. E. HAMIELEC, Polym. Plastic Tech. Eng. 28 (1989) 319.

    Google Scholar 

  31. idem., Polym. Eng. Sci. 29 (1989) 390.

    Google Scholar 

  32. G. LUX, in Speciality Plastics Conference, 1988, p. 139.

  33. D. CAMPBELL and M. M. QAYYUM, J. Polym. Sci. Polym. Phys. Ed. 18 (1980) 83.

    Google Scholar 

  34. P. PARRINI and G. CORRIERI, Makromol. Chem. 62 (1963) 87.

    Google Scholar 

  35. M. AVELLA, R. DELL'ERBA, L. D'ORAZIO and E. MARTUSCELLI, Polym. Networks Blends 5 (1995) 47.

    Google Scholar 

  36. M. GAHLEITNER, K. BERNREITNER and W. NEISSL, Polym. Testing 14 (1995) 173.

    Google Scholar 

  37. G. EDER, H. JANESCHITZ-KRIEGL and S. LIEDAUER, Progr. Polym. Sci. 15 (1990) 629.

    Google Scholar 

  38. E. MARTUSCELLI, C. SILVESTRE and G. ABATE, Polymer 23 (1982) 229.

    Google Scholar 

  39. R. PAUKKERI and A. LEHTINEN, ibid. 34 (1993) 4075.

    Google Scholar 

  40. R. P. WOOL, in “Polypropylene: Structure, Blends and Composites, Vol. 1,” edited by J. Karger-Kocsis (Chapman and Hall, London, 1995) p. 227.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duplay, C., Monasse, B., Haudin, JM. et al. Shear-induced crystallization of polypropylene: Influence of molecular weight. Journal of Materials Science 35, 6093–6103 (2000). https://doi.org/10.1023/A:1026731917188

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026731917188

Keywords

Navigation