Skip to main content
Log in

Costs of sporophyte production in the moss, Dicranum polysetum

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

We investigated the cost of sporophyte production in the moss Dicranum polysetum both by examining patterns of growth and reproduction in unmanipulated shoots and by experimentally manipulating sexual reproduction.

The estimated proportion of total carbon investment allocated to sexual reproduction in sporophyte-producing shoots over the study period was 74.8%. Unmanipulated shoots that aborted all sporophytes had a significantly higher growth in the top shoots than shoots that produced sporophytes. In sporophyte-producing shoots, total apical growth decreased proportionately with the number of sporophytes.

Experimental prevention of sporophyte development resulted in significantly higher total apical growth of the gametophytes. Shoots where current perichaetia were lacking when marked had a mass increase in the top shoots similar to manipulated sporophytic shoots whereas sporophytic control shoots grew significantly less than these two categories.

The difference between control shoots and manipulated shoots in the mass of vegetative apical growth was mainly because of different length increments whereas mass per unit length was similar between groups. The probability to reproduce sexually in the year after the manipulation, and the biomass allocated to this reproduction, were not affected by the experimental treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ågren, J. 1988. Sexual differences in biomass and nutrient allocation in the dioecious Rubus chamaemorus. Ecology 71: 263–272.

    Google Scholar 

  • Ågren, J. & Willson, M. F. 1994. Cost of seed production in the perennial herbs Geranium maculatum and G. sylvaticum: an experimental field study. Oikos 70: 35–42.

    Google Scholar 

  • Albinsson, C. 1997. Niche relations and association analysis of southern Swedish mire hepatics. J. Bryol. 19: 409–424.

    Google Scholar 

  • Arnell, H. W. 1875. De skandinaviska löfmsossornas kalendarium. Upsala Univ. Årsskr.1875, Math. Naturv. IV: 1–129.

    Google Scholar 

  • Antlfinger, A. E. & Wendel, L. F. 1997. Reproductive effort and floral photosynthesis in Spiranthes cernua (Orchidaceae). Am. J. Bot. 84: 769–780.

    Google Scholar 

  • Bates, J. W. 1988. The effect of shoot spacing on the growth and branch development of the moss Rhytidiadelphus triquetrus. New Phytol. 109: 499–504.

    Google Scholar 

  • Bates, J. W. & Bakken, S. 1998. Nutrient retention, desiccation and redistribution in mosses. Pp. 293–304. In: Bates, J. W., Ashton N. W. & Duckett J. G. (eds), Bryology for the twenty-first century. Maney Publishing and British Bryol. Soc., Leeds.

  • Bell, G. 1980. The costs of reproduction and their consequences. Am. Nat. 116: 45–76.

    Google Scholar 

  • Calvo, R. N. 1990. Four-year growth and reproduction of Cyclopogon cranichoides (Orchidaceae. in South Florida. Am. J. Bot. 77: 736–741.

    Google Scholar 

  • Calvo, R. N. 1993. Evolutionary demography of orchids: intensity and frequency of pollination and the cost of fruiting. Ecology 74: 1033–1042.

    Google Scholar 

  • Charnov, E. L. & Krebs, J. R. 1974. On clutch size and fitness. Ibis 116: 217–219.

    Google Scholar 

  • Cipollini, M. L. & Whigham, D. F. 1994. Sexual dimorphism and cost of reproduction in the dioecious shrub Lindera benzoin (Lauraceae). Am. J. Bot. 81: 65–75.

    Google Scholar 

  • Convey, P. 1994. Modelling reproductive effort in sub-and maritime Antarctic mosses. Oecologia 100: 45–53.

    Google Scholar 

  • Convey, P. & Lewis Smith, R. I. 1993. Investment in sexual reproduction by Antarctic mosses. Oikos 68: 293–302.

    Google Scholar 

  • Cunningham, S. A. 1997. The effect of light environment, leaf area, and stored carbohydrates on inflorescence production by a rain forest understory palm. Oecologia 111: 36–44.

    Google Scholar 

  • Davidson, A. J., Harborne, J. B. & Longton, R. E. 1989. Identification of hydroxycinnamic and phenolic acids in Mnium hornum and Brachythecium rutabulum and their possible role in the protection against herbivory. J. Hattori Bot. Lab. 67: 415–422.

    Google Scholar 

  • Dierssen, K. 1996. Vegetation Nordeuropas. Eugen Ulmer, Stuttgart.

    Google Scholar 

  • During, H. J. 1979. Life strategies of bryophytes: a preliminary review. Lindbergia 5: 2–18.

    Google Scholar 

  • During, H. J. 1990. Clonal growth patterns among bryophytes. Pp. 153–176. In: van Groenendael, J. & de Kroon, H. (eds), Clonal growth in plants: regulation and function. SPB Academic Publishing, The Hague.

    Google Scholar 

  • During, H. J. 1992. Ecological classifications of bryophytes and lichens. Pp. 1–31. In: Bates, J. W. & Farmer, A. M. (eds), Bryophytes and lichens in a changing environment. Oxford Science Publ., Oxford.

    Google Scholar 

  • Ehrlén, J. 1992. Proximate limits to seed production in a herbaceous perennial, Lathyrus vernus. Ecology 73: 1820–1831.

    Google Scholar 

  • Geber, M. A., de Kroon, H. & Watson, M. A. 1997. Organ preformation in mayapple as a mechanism for historical effects on demography. J. Ecol. 85: 211–223.

    Google Scholar 

  • González-Mancebo, J. M. & During, H. J. 1997. Reproductive effort of some mosses with different life strategies growing epiphytically in Salix forests in the Biesbosch, The Netherlands. Lindbergia 22: 36–42.

    Google Scholar 

  • Harper, J. L. 1977. Population biology of plants. Academic Press, London.

    Google Scholar 

  • Higuchi, M. 1997. Studies of polysety in Dicranum polysetum (Dicranaceae, Musci). Ann. Tsukuba Bot. Gard. 16: 129–133.

    Google Scholar 

  • Hofman, A. 1991. Phylogeny and population genetics of the genus Plagiothecium. PhD thesis, University Groningen, Groningen.

  • Horvitz, C. C. & Schemske, D. W. 1988. Demographic cost of reproduction in a neotropical herb: an experimental field study. Ecology 69: 1741–1745.

    Google Scholar 

  • Jennersten, O. 1991. Cost of reproduction in Viscaria vulgaris (Caryophyllaceae): a field experiment. Oikos 61: 197–204.

    Google Scholar 

  • Karlsson, P. S., Svensson, B. M., Carlsson, B. Å. & Nordell, K. O. 1990. Resource investment in reproduction and its consequences in three Pinguicula species. Oikos 59: 393–398.

    Google Scholar 

  • Karunen P. 1981. The role of neutral lipids in the physiology and ecology of subarctic Dicranum elongatum. Can. J. Bot. 59: 1902–1909.

    Google Scholar 

  • Langaas, A. E. 1997. Morphological and demographic variation in Polytrichastrum formosum. Lindbergia 22: 75–82.

    Google Scholar 

  • Longton R. E. 1988. The biology of polar bryophytes and lichens. Cambridge University Press, Cambridge.

    Google Scholar 

  • Lutz-Eckstein, R. & Karlsson, P. S. 1999. Recycling of nitrogen among segments of Hylocomium splendens as compared with Polytrichum commune: Implications for clonal integration in an ectohydric bryophyte. Oikos 86: 87–96.

    Google Scholar 

  • Mägdefrau, K. 1982. Life-forms of bryophytes. Pp. 45–58. In: Smith, A. J. E. (ed.). Bryophyte Ecology. Chapman and Hall, London.

    Google Scholar 

  • Muir, A. M. 1995. The cost of reproduction to the clonal herb Asarum canadense (wild ginger). Can. J. Bot. 73: 1683–1686.

    Google Scholar 

  • Newell, E. A. 1991. Direct and delayed costs of the reproduction in Aesculus california. J. Ecol. 79: 365–378.

    Google Scholar 

  • Økland, R. H. 1995. Population biology of the clonal moss Hylocomium splendens in Norwegian boreal spruce forests. I. Demography. J. Ecol. 83: 697–712.

    Google Scholar 

  • Økland, R. H. 2000. Population biology of the clonal moss Hylocomium splendens in Norwegian boreal spruce forests. 5. Vertical analysis of individual shoot segments. Oikos 88: 449–469.

    Google Scholar 

  • Parker, I. M. 1997. Pollinator limitation of Cytisus scoparius (Scotch broom), an invasive exotic shrub. Ecology 78: 1457–1470.

    Google Scholar 

  • Pitelka, L. F., Hansen, S. B. & Ashmun, J. W. 1985. Population biology of Clintonia borealis: ramet and patch dynamics. J. Ecol. 73: 169–183.

    Google Scholar 

  • Primack, R. B., Miao, S. L. & Becker, K. R. 1994. Costs of reproduction in the pink lady's slipper orchid (Cypripedium acaule): defoliation, increased fruit production and fire. Am. J. Bot. 81: 1083–1090.

    Google Scholar 

  • Proctor, M. C. F. 1977. Evidence of the carbon nutrition of moss sporophytes from 14CO2 uptake and the subsequent movement of labelled assimilates. J. Bryol. 9: 375–386.

    Google Scholar 

  • Proctor, M. C. F. 1990. The physiological basis of bryophyte production. Bot. J. Linn. Soc. 104: 61–77.

    Google Scholar 

  • Reznick, D. 1985. Costs of reproduction: an evaluation of the empirical evidence. Oikos 44: 257–267.

    Google Scholar 

  • Rydin, H. 1997. Competition among bryophytes. Adv. Bryol. 6: 135–168.

    Google Scholar 

  • Samson, D. A. & Werk, K. S. 1986. Size-dependent effects in the analysis of reproductive effort in plants. Am. Nat. 127: 667–680.

    Google Scholar 

  • Stark, L. R. & Stephenson, A. G. 1983. Reproductive biology of Entodon cladorrhizans (Bryopsida, Entodontaceae). II. Resource-limited reproduction and sporophyte abortion. Syst. Bot. 8: 389–394.

    Google Scholar 

  • SYSTAT 1996. SYSTAT for Windows. Statistics, version 6.0. SPSS Inc., Chicago, Illinois, USA.

    Google Scholar 

  • Syrjänen, K. & Lehtilä, K. 1993. The cost of reproduction in Primula veris: differences between two adjacent populations. Oikos 67: 465–472.

    Google Scholar 

  • Thorén, L. M., Karlsson, P. S. & Tuomi, J. 1996. Somatic cost of reproduction in three carnivorous Pinguicula species. Oikos 76: 427–434.

    Google Scholar 

  • van der Hoeven, E. C. & During, H. J. 1997. The effect of density on size frequency distributions in chalk grassland bryophyte populations. Oikos 80: 533–539.

    Google Scholar 

  • van Noordwijk, A. J.& de Jong, G. 1986. Acquisition and allocation of resources: their influence on variation in life history tactics. Am. Nat. 128: 137–142.

    Google Scholar 

  • Weaver, S. E. & Cavers, P. B. 1980. Reproductive effort of two perennial weed species in different habitats. J. Appl. Ecol. 17: 505–513.

    Google Scholar 

  • Williams, G. C. 1966. Adaptation and natural selection. Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Wilson, A. M. and Thompson, K. 1989. A comparative study of reproductive allocation in 40 British grasses. Func. Ecol. 3: 297–302.

    Google Scholar 

  • Worley, A. C. & Harder, L. D. 1996. Size-dependent resource allocation and costs of reproduction in Pinguicula vulgaris (Lentibulariaceae). J. Ecol. 84: 195–206.

    Google Scholar 

  • Zimmerman, J. K. & Aide, T. M. 1989. Patterns of fruit production in a neotropical orchid: pollinator vs. resource limitation. Am. J. Bot. 76: 67–73.

    Google Scholar 

  • Zimmerman, M. & Pyke, G. H. 1988. Reproduction and Polemonium: assessing the factors limiting seed set. Am. Nat. 131: 723–738.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehrlén, J., Bisang, I. & Hedenäs, L. Costs of sporophyte production in the moss, Dicranum polysetum. Plant Ecology 149, 207–217 (2000). https://doi.org/10.1023/A:1026531122302

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026531122302

Navigation