Skip to main content
Log in

Assessing genetic diversity of sweet potato (Ipomoea batatas (L.) Lam.) cultivars from tropical America using AFLP

  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The sweet potato genebank at the International Potato Center (CIP) maintains 5,526 cultivated I. batatas accessions from 57 countries. Knowledge of the genetic structure in this collection is essential for rational germplasm conservation and utilization. Sixty-nine sweet potato cultivars from 4 geographical regions (including 13 countries) of Latin America were randomly sampled and fingerprinted using AFLP markers. A total of 210 polymorphic and clearly scorable fragments were generated. A geographic pattern of diversity distribution was revealed by mean similarity, multidimensional scaling (MDS), and analysis of molecular variance (AMOVA). The highest genetic diversity was found in Central America, whereas the lowest was in Peru-Ecuador. The within-region variation was the major source of molecular variance. The between-regions variation, although it only explains 10.0% of the total diversity, is statistically significant. Cultivars from Peru-Ecuador, with the lowest level of within region diversity, made the most significant contribution to the between region differentiation. These results support the hypothesis that Central America is the primary center of diversity and most likely the center of origin of sweet potato. Peru-Ecuador should be considered as a secondary center of sweet potato diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, I., A. Gibbs, R. Peakall & G. Weiller, 1995. RAP-Distance, Package Manual. Version 1.03. Australian National University, Canberra.

    Google Scholar 

  • Austin, D.F., 1983. Variability in sweetpotatoes in America. Proc. Amer. Soc. Hort. Sci. 27 (pt. B): 15–26.

    Google Scholar 

  • Austin, D.F., 1988. The taxonomy, evolution and genetic diversity of sweetpotatoes and related wild species, In: P. Gregory (Ed.), Exploration, maintenance, and utilization of sweetpotato genetic resources, pp. 27-60. Intl. Potato Ctr., Lima, Peru.

    Google Scholar 

  • Brown, A.H.D., 1989. Core collection: A practical approach to genetic resources management. Genome 31: 818-824.

    Google Scholar 

  • Doyle, J.J. & J.L. Doyle, 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13-15.

    Google Scholar 

  • Excoffier, L. & P.E. Smouse, 1994. Using allele frequencies and geographic subdivision to reconstruct gene trees within a species: molecular variance parsimony. Genetics 136: 343-359.

    Google Scholar 

  • Excoffier, L, P.E. Smouse & J.M. Quattro, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: applications to human mitochondria DNA restriction data. Genetics 131: 479-491.

    Google Scholar 

  • Engel, E., 1970. Exploration of the Chilca Canyon. Current Anthropol. 11: 55-58.

    Google Scholar 

  • Ghislain, M., D.P. Zhang, D. Fajardo, Z. Huamán & R.J. Hijmans, 1999. Marker-assisted sampling of the cultivated Andean potato Solanum phureja collection using RAPD markers. Genet. Resour. Crop Evol. 46: 547-555.

    Google Scholar 

  • Huamán, Z. & D.P. Zhang, 1997. Sweetpotato. In: D. Fuccillo et al. (Eds), Biodiversity in Trust-Conservation and Use of Plant Genetic Resources in CGIAR Centers, pp. 29-38. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • International Potato Center (CIP), 1998. Sweetpotato facts. International Potato Center, Lima, Peru.

    Google Scholar 

  • Jarret, R.L. & D.F. Austin, 1994. Genetic diversity and systematic relationships in sweetpotato (Ipomoea batatas (L.) Lam.) and related species as revealed by RAPD analysis. Genet. Resour. Crop Evol. 41: 165-173.

    Google Scholar 

  • O'Brien, P.J., 1972. The sweetpotato: its origin and dispersal. Am. Anthropologist 74: 343-365.

    Google Scholar 

  • SAS Institute, 1997. SAS/STAT Software: Changes and Enhancements through Release 6.12. SAS Inst. Inc., Cary, N.C.

    Google Scholar 

  • Sneath, P.H.A. & R.R. Sokal, 1973. Numerical taxonomy. The principles and practice of numerical classification. W.H. Freeman, San Francisco.

    Google Scholar 

  • Urgent, D. & L. Peterson, 1988. Archeological remains of potato and sweetpotato in Peru. CIP Circular 16 (3): 1-10.

    Google Scholar 

  • Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van der Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper & M. Zabeau, 1995. AFLP: a new technique for DNA fingerprinting. Nuc. Ac. Res. 23: 4407-4414.

    Google Scholar 

  • Woolfe, J., 1992. Sweetpotato, an untapped food resource. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Yen, D.E., 1974. The sweetpotato and Oceania. Bishop Museum Bull., Honolulu 236: 1-389.

    Google Scholar 

  • Yen, D.E., 1982. Sweetpotato in historical perspective. In: R.L. Villareal & T.D. Griggs (Eds.), SweetPotato, Proceedings of First International Symposium, pp. 17-3O. AVRDC Publ. No. 82-172, Tainan, Taiwan, China.

  • Yonesawa, Y., T. Nomura & H. Morishima, 1995. Sampling strategies for use in stratified germplasm collections, In: T. Hodgkin, A.H.D. Brown, Th.J.L. Van Hintum & E.A.V. Morales Eds.), Core Collections of Plant Genetic Resources, pp. 35-54. John Willey & Sons, Chichester.

    Google Scholar 

  • Zhang, D.P., M. Ghislain, Z. Huamán, A. Golmirzaie & R.J. Hijmans, 1998. RAPD variation in sweetpotato [Ipomoea batatas (L.) Lam. cultivars from South America and Papua New Guinea. Genet. Resour. Crop Evol. 45: 271-277.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D., Cervantes, J., Huamán, Z. et al. Assessing genetic diversity of sweet potato (Ipomoea batatas (L.) Lam.) cultivars from tropical America using AFLP. Genetic Resources and Crop Evolution 47, 659–665 (2000). https://doi.org/10.1023/A:1026520507223

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026520507223

Navigation