Skip to main content
Log in

Integration with respect to local time

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Let \(\left( {L_t^x ;x \in \mathbb{R},t \geqslant 0} \right)\) be the local time process of a linear Brownian motion B. We integrate the Borel functions on \(\mathbb{R}_ \times \mathbb{R}_ + \) with respect to \(\left( {L_t^x ;x \in \mathbb{R},t \geqslant 0} \right)\). This allows us to write Itôrs formula for new classes of functions, and to define a local time process of B on any borelian curve. Some results are extended from deterministic to random functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azéma, J., Jeulin, T., Knight, F. and Yor, M.: ‘Quelques calculs de compensateurs impliquant l'injectivité de certains processus croissants’. Séminaire de Probabilités XXXII (1998), LNM 1686, 316–327.

    Google Scholar 

  2. Bouleau, N. and Yor, M.: ‘Sur la variation quadratique des temps locaux de certaines semimartingales’. C.R. Acad. Sc. Paris 292 (1981), 491–494.

    Google Scholar 

  3. Dozzi, M.: ‘Stochastic processes with a multidimensional parameter’. Pitman Research Notes in Mathematics Series (1989).

  4. Föllmer, H.: ‘Quasimartingales à deux indices’. C.R. Acad. Sci. Paris 288 (1977), 28–49.

    Google Scholar 

  5. Föllmer, H., Protter, Ph. and Shiryaev, A. N.: ‘Quadratic covariation and an extension of Itô's formula’. Bernoulli 1(1/2) (1995), 149–169.

    Google Scholar 

  6. Kunita, H.: ‘Stochastic flows and Stochastic differential equations’. Cambridge Studies in Advanced Mathematics 24. Cambridge University Press (1990).

  7. Lyons, T. J. and Zhang, T. S.: ‘Decomposition of Dirichlet processes and its application’. Annals of Probas 22(1) (1994), 494–524.

    Google Scholar 

  8. Lyons, T. J. and Zheng, W. A.: ‘Diffusion processes with non-smooth diffusion coefficients and their density functions’. Proceedings of the Royal Society of Edinburg 115A (1990), 231–242.

    Google Scholar 

  9. Meyer, P. A.: ‘Formule d'Itô géneralisée pour le mouvement brownien linéaire, d'aprés Föllmer, Protter, Shiryaev’. Sém de Probas. XXXI, LNM 1655 (1997), 252–255.

    Google Scholar 

  10. Pardoux, E. and Protter, P.: ‘A two-sided stochastic integral and its calculus’. Probab. Theory. Relat. Fields 76 (1987), 15–49.

    Google Scholar 

  11. Perkins, E.: ‘Local time is a semi-martingale’. Zeitschrift für Wahr 60 (1982), 79–117.

    Google Scholar 

  12. Rogers, L. C. G. and Walsh, J. B.: ‘Local time and stochastic area integrals’. Annals of Probas. 19(2) (1991), 457–482.

    Google Scholar 

  13. Revuz, D. and Yor, M.: Continuous Martingales and Brownian Motion. Springer-Verlag, 1991.

  14. Russo, F. and Vallois, P.: ‘Itô formula for C 1-functions of semimartingales’. Probab. Theory Relat. Fields 104 (1996), 27–41.

    Google Scholar 

  15. Stoica, L.: ‘On two-parameter semmartingales’. Zeitschrift für Wahr 45 (1978), 257–268.

    Google Scholar 

  16. Sznitman, A. S.: ‘Martingales dépendant d'un paramètre: une formule d'Itô’. Zeitschrift für Wahr 60 (1982), 41–70.

    Google Scholar 

  17. Walsh, J. B.: ‘Stochastic integration with respect to local time’, in Cinlar, Chung and Getoor (eds), Seminar on Stochastic Processes, Birkhaüser, Boston, 1982, pp. 237–302.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisenbaum, N. Integration with respect to local time. Potential Analysis 13, 303–328 (2000). https://doi.org/10.1023/A:1026440719120

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026440719120

Navigation