Skip to main content
Log in

Identification of a rice APETALA3 homologue by yeast two-hybrid screening

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

A cDNA clone OsMADS16 was isolated from the rice young inflorescence cDNA expression library by the yeast two-hybrid screening method with OsMADS4 as bait. We have previously shown that the OsMADS4 gene is a member of the PI family and that the MADS-box gene is involved in controlling development of the second and third whorls of rice flowers. The sequence comparison indicated that OsMADS16 belongs to the AP3 family. The OsMADS16 protein contains a PI-derived motif, FAFRVVPSQPNLH, that is a conserved sequence in AP3 family genes at the C-terminal region. In addition, OsMADS16 contains a paleoAP3 motif, YGGNHDLRLG, downstream of the PI-derived motif. The paleoAP3 motif is a consensus sequence in the C-terminal region of the AP3 family genes of lower eudicot and magnolid dicot species. RNA blot analysis showed that the OsMADS16 gene was expressed in the second and third whorls, whereas the OsMADS4 transcripts were present in the second, third, and fourth whorls. These expression patterns of the OsMADS16 and OsMADS4 genes are very similar to those of AP3 and PI, respectively. In the yeast two-hybrid system, OsMADS4 interacted only with OsMADS16 among several rice MADS genes investigated, suggesting that OsMADS4 and OsMADS16 function as a heterodimer in specifying sepal and petal identities. The OsMADS16 protein displayed transcription activation ability in yeast, whereas AP3 did not. It was also shown in yeast that OsMADS16 interacted with PI whereas OsMADS4 did not interact with AP3. These differences between OsMADS16 and AP3 indicate that the functions of the AP3 family genes of monocots and dicots diverged during molecular evolution processes of the B function genes. Deletion analysis showed that the 155–200 amino acid region of the OsMADS16 protein plays an important role in the transcription activation ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aeschbacher, R.A., Schrott, M., Potrykus, I. and Saul, M.W. 1991. Isolation and molecular characterization of PosF21, an Arabidopsis thaliana gene which shows characteristics of a b-ZIP class transcription factor. Plant J. 1: 303-316.

    Google Scholar 

  • Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, J., Miller, W. and Lipman, D.J. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucl. Acids Res. 25: 3389-3402.

    Google Scholar 

  • Bradley, D., Carpenter, R., Sommer, H., Hartley, N. and Coen, E. 1993. Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell 72: 85-95.

    Google Scholar 

  • Breeden, L. and Nasmyth, K. 1995. Regulation of the yeast HO gene. Cold Spring Harbor Symp. Quant. Biol. 50: 643-650.

    Google Scholar 

  • Carr, S.M. and Irish, V.F. 1997. Floral homeotic gene expression defines developmental arrest stages in Brassica oleracea L. vars. botrytis and italica. Planta 201: 179-188.

    Google Scholar 

  • Chung, Y.Y., Kim, S.R., Finkel, D., Yanofsky, M.F. and An, G. 1994. Early flowering and reduced apical dominance result from ectopic expression of a rice MADS box gene. Plant Mol. Biol. 26: 657-665.

    Google Scholar 

  • Chung, Y.Y., Kim, S.R., Kang, H.G., Noh, Y.S., Park, M.C., Finkel, D. and An, G. 1995. Characterization of two rice MADS box genes homologous to GLOBOSA. Plant Sci. 109: 45-56.

    Google Scholar 

  • Church, G.M. and Gilbert, W. 1984. Genomic sequencing. Proc. Natl. Acad. Sci. USA 81: 1191-1195.

    Google Scholar 

  • Coen, E.S. 1991. The role of homeotic genes in flower development and evolution. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 241-279.

    Google Scholar 

  • Courey, A.J., Holtzman, D.A., Jackson, S.P. and Tjian, R. 1989. Synergistic activation by the glutamine-rich domains of human transcription factor Sp1. Cell 59: 827-836.

    Google Scholar 

  • Davies, B., Egea-Cortines, M., de Andrade Silva, E., Saedler, H. and Sommer, H. 1996a. Multiple interactions amongst floral homeotic MADS box proteins. EMBO J. 15: 4330-4343.

    Google Scholar 

  • Davies, B., Rosa, A.D., Eneva, T., Saedler, H. and Sommer, H. 1996b. Alteration of tobacco floral organ identity by expression of combinations of Antirrhinum MADS-box genes. Plant J. 10: 663-677.

    Google Scholar 

  • Doyle, J.J. 1994. Evolution of a plant homeotic multigene family: toward connecting molecular systematics and molecular developmental genetics. Syst. Biol. 43: 307-328.

    Google Scholar 

  • Fan, H.-Y., Hu, Y., Tudor, M. and Ma, H. 1997. Specific interactions between the K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins. Plant J. 12: 999-1010.

    Google Scholar 

  • Garcia-Maroto, F., Salamini, F. and Rohde, W. 1993. Molecular cloning and expression patterns of the Deficiens homologous gene St-Deficiens from Solanum tuberosum. Plant J. 4: 771-780.

    Google Scholar 

  • Gietz, D., St Jean, A., Woods, R.A. and Schiestl, R.H. 1992. Improved method for high effieciency transformation of intact yeast cells. Nucl. Acids Res. 20: 1425.

    Google Scholar 

  • Goto, K. and Meyerowitz, E.M. 1994.Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 8: 1548-1560.

    Google Scholar 

  • Gustafson-Brown, C., Savidge, B. and Yanofsky, M.F. 1994. Regulation of the Arabidopsis floral homeotic gene APETALA1. Cell 76: 131-143.

    Google Scholar 

  • Hardenack, S., Ye, D., Saedler, H. and Grant, S. 1994. Comparison of MADS box gene expression in developing male and female flowers of the dioecious plant white campion. Plant Cell 6: 1775-1787.

    Google Scholar 

  • Heard, J. and Dunn, K. 1995.Symbiotic induction of a MADSbox gene during development of alfalfa root nodules. Proc. Natl. Acad. Sci. USA 92: 5273-5277.

    Google Scholar 

  • Hill, T.A., Day, C.D., Zondlo, S.C., Thackeray, A.G. and Irish, V.F. 1998. Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3. Development 125: 1711-1721.

    Google Scholar 

  • Hoffman, C.S. and Winston, F. 1987. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57: 267-272.

    Google Scholar 

  • Hope, I.A. and Struhl, K. 1986. Functional dissection of an eukaryotic transcriptional activator protein, GCN4 of yeast. Cell 46: 885-894.

    Google Scholar 

  • Huijser, P.W., Klein, J., Lonnig, W.-E., Meijer, H., Saedler, H. and Sommer, H. 1992. Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO J. 11: 1239-1249.

    Google Scholar 

  • Irish, V.F. and Yamamoto, Y.T. 1995. Conservation of floral homeotic gene function between Arabidopsis and Antirrhinum. Plant Cell 7: 1635-1644.

    Google Scholar 

  • Jack, T., Brochman, L.L. and Meyerowitz, E.M. 1992. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68: 683-697.

    Google Scholar 

  • Jack, T., Fox, G.L. and Meyerowitz, E.M. 1994.Arabidopsis homeotic gene APETALA3 ectopic expression: transcriptional and posttranscriptional regulation determine floral organ identity. Cell 76: 703-716.

    Google Scholar 

  • Kaiser, C., Michaelis, S. and Mitchell, A. 1994. Methods in Yeast Genetics: A Laboratory Course Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Kang, H.G. and An, G. 1997. Isolation and characterization of a rice MADS box gene belonging to the AGL2 gene family. Mol. Cell 7: 45-51.

    Google Scholar 

  • Kang, H.G., Noh, Y.S., Chung, Y.Y., Costa, M.A., An, K. and An, G. 1995. Phenotypic alterations of petal and sepal by ectopic expression of a rice MADS box gene in tobacco. Plant Mol. Biol. 29: 1-10.

    Google Scholar 

  • Kang, H.G., Jang, S., Chung, J.E., Cho, Y.G. and An, G. 1997. Characterization of two rice MADS box genes that control flowering time. Mol. Cell 7: 559-566.

    Google Scholar 

  • Kang, H.G., Jeon, J.S., Lee, S. and An, G. 1998. Identification of class B and class C floral organ identity genes from rice plants. Plant Mol. Biol. 38: 1021-1029.

    Google Scholar 

  • Kramer, E.M., Dorit, R.L. and Irish, V.F. 1998. Molecular evolution of genes controlling petal and stamen development: Duplication and divergence within the APETALA3 and PISTILLATA MADSbox gene lineages. Genetics 149: 765-783.

    Google Scholar 

  • Krizek, B.A. and Meyerowitz, E.M. 1996. The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development 122: 11-22.

    Google Scholar 

  • Ma, J. and Ptashne, M. 1987. A new class of yeast transcriptional activators. Cell 51: 113-119.

    Google Scholar 

  • Mandel, M.A., Gustafson-Brown, C., Savidge, B. and Yanofsky, M.F. 1992. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360: 273-277.

    Google Scholar 

  • McGonigle, B., Bouhidel, K. and Irish, V.F. 1986. Nuclear localization of the Arabidopsis APETALA3 and PISTILLATA homeotic gene products depends on their simultaneous expression. Genes Dev. 10: 1812-1821.

    Google Scholar 

  • Mermod, N., O'Neill, E.A., Kelly, T.J. and Tjian, R. 1989. The proline-rich transcriptional activator of CTF/NF-1 is distinct from the replication and DNA binding domain. Cell 58: 741-753.

    Google Scholar 

  • Miller, J.H. 1972. Experiments in Molecular Genetics, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Mizukami, Y. and Ma, H. 1992. Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell 71: 119-131.

    Google Scholar 

  • Mizukami, Y. and Ma, H. 1995. Separation of AG function in floral meristem determinacy from that in reproductive organ identity by expressing antisense AG RNA. Plant Mol. Biol. 28: 767-784.

    Google Scholar 

  • Pnueli, L., Abu-Abeid, M., Zamir, D., Nacken, W., Schwarz-Sommer, Z. and Lifschitz, E. 1991. The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis. Plant J. 1: 255-266.

    Google Scholar 

  • Purugganan, M.D. 1987. The MADS-box floral homeotic gene lineages predate the origin of seed plants: phylogenetic and molecular clock estimates. J. Mol. Evol. 45: 392-396.

    Google Scholar 

  • Purugganan, M.D., Rounsley, S.D., Schmidt, R.J. and Yanofsky, M.F. 1995. Molecular evolution of flower development: diversi-fication of the plant MADS-box regulatory gene family. Genetics 140: 345-356.

    Google Scholar 

  • Riechmann, J.L., Krizek, B.A. and Meyerowitz, E.M. 1996a. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Natl. Acad. Sci. USA 93: 4793-4798.

    Google Scholar 

  • Riechmann, J.L., Wang, M. and Meyerowitz, E.M. 1996b. DNAbinding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucl Acids Res. 24: 3134-3141.

    Google Scholar 

  • Samach, A., Kohalmi, S.E., Motte, P., Datla, R. and Haughn, G.W. 1997. Divergence of function and regulation of class B floral organ identity genes. Plant Cell 9: 559-570.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Schindler, U., Terzaghi, W., Beckmann, H., Kadesch, T. and Cashmore, A.R. 1992. DNA binding site preferences and transcriptional activation properties of the Arabidopsis transcription factor GBF1. EMBO J. 11: 1275-1289.

    Google Scholar 

  • Schwarz-Sommer, Z., Huijser, P., Nacken, W., Saedler, H. and Sommer, H. 1990. Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250: 931-936.

    Google Scholar 

  • Schwarz-Sommer, Z., Hue, I., Huijser, P., Flor, P.J., Hansen, R., Tetens, F., Lonnig, W., Saedler, H. and Sommer, H. 1992. Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J. 11: 251-263.

    Google Scholar 

  • Shure, M., Wessler, S. and Federoff, N. 1983. Molecular identification and isolation of the waxy locus in maize. Cell 35: 225-233.

    Google Scholar 

  • Sommer, H., Beltran, J.-P., Huijser, P., Pape, H., Lonnig, W.-E., Saedler, H. and Schwarz-Sommer, Z. 1990. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 9: 605-613.

    Google Scholar 

  • Theissen, G., Kim, J.T. and Saedler, H. 1996. Classification and phylogeny of the MADS-box multigene family suggest de-fined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J. Mol. Evol. 43: 484-516.

    Google Scholar 

  • Tilly, J.J., Allen, D.W. and Jack, T. 1988. The CArG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects. Development 125: 1647-1657.

    Google Scholar 

  • Trobner, W., Ramirez, L., Motte, P., Hue, I., Huijser, P., Lonnig, W.-E., Saedler, H., Sommer, H. and Schwarz-Sommer, Z. 1992. GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J. 11: 4693-4704.

    Google Scholar 

  • Tsuchimoto, S., van der Krol, A.R. and Chua, N.-H. 1993. Ectopic expression of pMADS3 in transgenic petunia phenocopies the petunia blind mutant. Plant Cell 5: 843-853.

    Google Scholar 

  • van der Krol, A.R., Brunelle, A., Tsuchimoto, S. and Chua, N.-H. 1993. Functional analysis of petunia floral homeotic MADS box gene pMADS1. Genes Dev. 7: 1214-1228.

    Google Scholar 

  • Weigel, D. and Meyerowitz, E.M. 1994. The ABCs of floral homeotic genes. Cell 78: 203-209.

    Google Scholar 

  • Yanofsky, M.F., Ma, H., Bowman, J.L., Drews, G.N., Feldmann, K.A. and Meyerowitz, E.M. 1990. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346: 35-39.

    Google Scholar 

  • Yoshida, S. 1981. Fundamentals of Rice Crop Science, pp. 55-56. IRRI, Philippines.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, YH., Jung, JY., Kang, HG. et al. Identification of a rice APETALA3 homologue by yeast two-hybrid screening. Plant Mol Biol 40, 167–177 (1999). https://doi.org/10.1023/A:1026429922616

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026429922616

Navigation