Skip to main content
Log in

Engineering of Dendrimer Surfaces to Enhance Transepithelial Transport and Reduce Cytotoxicity

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To evaluate the cytotoxicity, permeation, and transport mechanisms of PAMAM dendrimers and surface-modified cationic PAMAM dendrimers using monolayers of the human colon adenocarcinoma cell line, Caco-2.

Methods. Cytotoxicity was determined using the MTT assay. The effect of dendrimers on monolayer integrity was determined from measurements of transepithelial electrical resistance (TEER) and [14C]mannitol apparent permeability coefficient (Papp). The Papp of dendrimers through monolayers was measured in both the apical (A)-to-basolateral (B) and B→A directions at 4°C and 37°C and also in the presence and absence of ethylenediamine tetraacetic acid (EDTA) and colchicine.

Results. The cytotoxicity and permeation of dendrimers increased with both concentration and generation. The cytotoxicity of cationic dendrimers (G2, G3, G4) was greater than that of anionic dendrimers (G2.5, G3.5) but was reduced by conjugation with lauroyl chloride; the least cytotoxic conjugates were those with six attached lauroyl chains. At 37°C the Papp of cationic dendrimers was higher than that of anionic dendrimers and, in general, increased with the number of attached lipid chains. Cationic dendrimers decreased TEER and significantly increased the Papp of mannitol. Modified dendrimers also reduced TEER and caused a more marked increase in the Papp of mannitol. The Papp values of dendrimers and modified dendrimers were higher in the presence of EDTA, lower in the presence of colchicine, and lower at 4°C than at 37°C.

Conclusions. The properties of dendrimers may be significantly modified by surface engineering. Conjugation of cationic PAMAM dendrimers with lauroyl chloride decreased their cytotoxicity and increased their permeation through Caco-2 cell monolayers. Both PAMAM dendrimers and lauroyl-PAMAM dendrimer conjugates can cross epithelial monolayers by paracellular and transcellular pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Tomalia. Dendrimer molecules. Sci. Am. 272:62-66 (1995).

    Google Scholar 

  2. A. D'Emanuele, D. Attwood, and R. Abu-Rmaileh. Dendrimers. In J. Swarbrick and J. C. Boylan (eds.), Encyclopedia of Pharmaceutical Technology, 2nd ed., update 3. Marcel Dekker, New York, 2002, pp. 1-21.

    Google Scholar 

  3. J. C. Roberts, M. K. Bhalgat, and R. T. Zera. Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst dendrimers. J. Biomed. Mater. Res. 30:53-65 (1996).

    Google Scholar 

  4. N. Malik, R. Wiwattanapatapee, R. Klopsch, K. Lorenz, H. Frey, J. W. Weener, E. W. Meijer, W. Paulus, and R. Duncan. Dendrimers: Relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J. Contr. Rel. 65:133-148 (2000).

    Google Scholar 

  5. R. Jevprasesphant, J. Penny, R. Jalal, D. Attwood, N. B. McKeown, and A. D'Emanuele. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int. J. Pharm. 252:263-266 (2003).

    Google Scholar 

  6. A. T. Florence, T. Sakthivel, and I. Toth. Oral uptake and translocation of a polylysine dendrimer with a lipid surface. J. Contr. Rel. 65:253-259 (2000).

    Google Scholar 

  7. R. Wiwattanapatapee, B. Carreno-Gomez, N. Malik, and R. Duncan. Anionic PAMAM dendrimers rapidly cross adult rat intestine in vitro: a potential oral delivery system. Pharm. Res. 17:991-998 (2000).

    Google Scholar 

  8. M. El-Sayed, M. Ginski, C. Rhodes, and H. Ghandehari. Transepithelial transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers. J. Contr. Rel. 81:355-365 (2002).

    Google Scholar 

  9. P. Artursson. Epithelial transport of drugs in cell culture. I: A model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells. J. Pharm. Sci. 79:476-482 (1990).

    Google Scholar 

  10. P. Artursson and R. T. Borchardt. Intestinal drug absorption and metabolism in cell cultures, Caco-2 and beyond. Pharm. Res. 14:1655-1658 (1997).

    Google Scholar 

  11. R. T. Borchardt, H. E. Lane, B. H. Hirst, P. L. Smith, K. L. Audus, and A. Tsuji. Application of cell culture systems to the study of drug transport and metabolism. In A. C. Cuello and B. Collier (eds.), Pharmacological Sciences: Perspectives for Research and Therapy in the Late 1990s, Verlag, Basel, 1995, pp. 493-501.

    Google Scholar 

  12. C. A. Bailey, P. Bryla, and A. W. Malick. The use of the intestinal epithelial cell culture model, Caco-2, in pharmaceutical development. Adv. Drug Deliv. Rev. 22:85-103 (1996).

    Google Scholar 

  13. L.-S. L. Gan and D. R. Thakker. Applications of the Caco-2 model in the design and development of orally active drugs: elucidation of biochemical and physical barriers posed by the intestinal epithelium. Adv. Drug Deliv. Rev. 23:77-98 (1997).

    Google Scholar 

  14. P. Artursson, K. Palm, and K. Luthman. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Deliv. Rev. 46:27-43 (2001).

    Google Scholar 

  15. T. Lindmark, T. Nikkila, and P. Artursson. Mechanisms of absorption enhancement by medium chain fatty acids in intestinal epithelial Caco-2 cell monolayers. J. Pharmacol. Exp. Ther. 275:958-964 (1995).

    Google Scholar 

  16. K. Higaki, T. Yata, M. Sone, K.-I. Ogawara, and T. Kimura. Estimation of absorption enhancement by medium-chain fatty acids in rat large intestine. Res. Commun. Mol. Pathol. Pharmacol. 109:231-240 (2001).

    Google Scholar 

  17. Y. Kimura, Y. Hosoda, M. Shima, S. Adachi, and R. Matsuno. Physicochemical properties of fatty acids for assessing the threshold concentration to enhance the absorption of a hydrophilic substance. Biosci. Biotechnol. Biochem. 62:443-447 (1998).

    Google Scholar 

  18. T. Lindmark, Y. Kimura, and P. Artursson. Absorption enhancement through intracellular regulation of tight junction permeability by medium chain fatty acids in Caco-2 cells. J. Pharmacol. Exp. Ther. 284:362-369 (1998).

    Google Scholar 

  19. M. Tomita, M. Hayashi, and S. Awazu. Absorption-enhancing mechanism of EDTA, caprate, and decanoylcarnitine in Caco-2 cells. J. Pharm. Sci. 85:608-611 (1996).

    Google Scholar 

  20. H. S. Thatte, K. R. Bridges, and D. E. Golan. Microtubule inhibitors differentially affect translational movement, cell surface expression, and endocytosis of transferrin receptors in K562 cells. J. Cell. Physiol. 160:345-357 (1994).

    Google Scholar 

  21. S. L. Snyder and P. Z. Sobocinski. An improved 2,4,6-trinitrobenzenesulfonic acid method for the determination of amines. Anal. Biochem. 64:284-288 (1975).

    Google Scholar 

  22. T. Mosmann. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immun. Methods 65:55-63 (1983).

    Google Scholar 

  23. G. A. Brazeau, S. Attia, S. Poxon, and J. A. Hughes. In vitro myotoxicity of selected cationic macromolecules used in non-viral gene delivery. Pharm. Res. 15:680-684 (1998).

    Google Scholar 

  24. H. Yoo and R. L. Juliano. Enhanced delivery of antisense oligonucleotides with fluorophore-conjugated PAMAM dendrimers. Nucleic Acids Res. 28:4225-4231 (2000).

    Google Scholar 

  25. V. H. L. Lee and J. J. Yang. Oral Drug Delivery. In A. M. Hillery, A. W. Lloyd, and J. Swarbrick (eds.), Drug Delivery and Targeting, Taylor and Francis, London, 2001, pp. 145-183.

    Google Scholar 

  26. P. Artursson, T. Lindmark, S. S. Davis, and L. Illum. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm. Res. 11:1358-1361 (1994).

    Google Scholar 

  27. G. Ranaldi, I. Marigliano, I. Vespignani, G. Perozzi, and Y. Sambuy. The effect of chitosan and other polycations on tight junction permeability in the human intestinal Caco-2 cell line. J. Nutr. Biochem. 13:157-167 (2002).

    Google Scholar 

  28. P. Anderle, E. Niederer, W. Rubas, C. Hilgendorf, H. Spahn-Langguth, H. Wunderli-Allenspach, H. P. Merkle, and P. Langguth. P-glycoprotein (P-gp) mediated efflux in Caco-2 cell monolayers: the influence of culturing conditions and drug exposure on P-gp. J. Pharm. Sci. 87:757-762 (1998).

    Google Scholar 

  29. C. H. M. Versantvoort, R. C. A. Ondrewater, E. Duizer, J. J. M. Van de Sandt, A. J. Gilde, and J. P. Groten. Monolayers of IEC-18 cells as an in vitro model for screening the passive transcellular and paracellular transport across the intestinal barrier: comparison of active and passive transport with the human colon carcinoma Caco-2 cell line. Environ. Toxicol. Pharmacol. 11:335-344 (2002).

    Google Scholar 

  30. A. B. J. Noach, Y. Kurosaki, M. C. M. Blom-Roosemalen, A. G. de Boer, and D. D. Breimer. Cell-polarity dependent effect of chelation on the paracellular permeability of confluent Caco-2 cell monolayers. Int. J. Pharm. 90:229-237 (1993).

    Google Scholar 

  31. C. B. Collares-Buzato, G. T. A. McEwan, M. A. Jepson, N. L. Simmons, and B. H. Hirst. Paracellular barrier and junctional protein distribution depend on basolateral extracellular Ca2+ in cultured epithelia. Biochim. Biophys. Acta 1222:147-158 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antony D'Emanuele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jevprasesphant, R., Penny, J., Attwood, D. et al. Engineering of Dendrimer Surfaces to Enhance Transepithelial Transport and Reduce Cytotoxicity. Pharm Res 20, 1543–1550 (2003). https://doi.org/10.1023/A:1026166729873

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026166729873

Navigation