Skip to main content
Log in

Pulmonary Absorption of Insulin Mediated by Tetradecyl-β-Maltoside and Dimethyl-β-Cyclodextrin

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To determine if tetradecyl-β-maltoside (TDM) and dimethyl-β-cyclodextrin (DMβCD) enhance pulmonary absorption of insulin and to investigate if they do so by a reversible action on respiratory epithelium.

Methods. Insulin formulated with saline, TDM, or DMβCD was administered intratracheally, after laryngoscopic visualization, as a spray to anesthetized rats. Reversibility studies were conducted in intact rats by administering insulin at different time points after administration of TDM or DMβCD. The pharmacodynamics and pharmacokinetics of insulin formulations were assessed by measuring plasma glucose and plasma insulin concentrations.

Results. When insulin formulated with increasing concentrations (0.06-0.25%) of TDM or DMβCD were administered to anesthetized rats, there was a concentration-dependent decrease in plasma glucose and increase in plasma insulin concentrations. The relative bioavailability of insulin formulations containing TDM was higher (0.34-0.84%) than that of formulations containing DMβCD (0.19-0.48%). When insulin was administered 120 min after an agent was administered, in the reversibility study, no significant change in plasma glucose and insulin levels occurred compared to control.

Conclusions. Both TDM and DMBCD enhance pulmonary absorption of insulin, with TDM being more efficacious than DMβCD in enhancing insulin absorption via pulmonary administration. The effects of TDM and DMβCD on respiratory epithelium are reversible, and the epithelium reestablishes its normal physiologic barrier 120 min after exposure to these agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. T. Cefalu, J. Rosenstock, and S. Bindra. Inhaled insulin: a novel route for insulin delivery. Expert. Opin. Investig. Drugs 11:687-691 (2002).

    Google Scholar 

  2. J. S. Patton, J. Bukar, and S. Nagarajan. Inhaled insulin. Adv. Drug Del. Rev. 35:235-247 (1999).

    Google Scholar 

  3. F. M. Wigley, J. H. Londono, S. H. Wood, J. C. Shipp, and R. H. Waldman. Insulin across respiratory mucosae by aerosol delivery. Diabetes 20:552-556 (1971).

    Google Scholar 

  4. R. U. Agu, M. I. Ugwoke, M. Armand, R. Kinget, and N. Verbeke. The lung as a route for systemic delivery of therapeutic proteins and peptides. Respir. Res. 2:198-209 (2001).

    Google Scholar 

  5. J. Yu and Y. W. Chien. Pulmonary drug delivery: physiologic and mechanistic aspects. Crit. Rev. Ther. Drug Carrier Syst. 14:395-453 (1997).

    Google Scholar 

  6. F. Komada, S. Iwakawa, N. Yamamoto, H. Sakakibara, and K. Okumura. Intratracheal delivery of peptide and protein agents: absorption from solution and dry powder by rat lung. J. Pharm. Sci. 83:863-867 (1994).

    Google Scholar 

  7. R. D. DiMarchi, R. E. Chance, H. B. Long, J. E. Shields, and L. J. Slieker. Preparation of insulin with improved pharmacokinetics relative to human insulin through consideration of structural homology with insulin-like growth factor I. Horm. Res. 41:93-96 (1994).

    Google Scholar 

  8. M. E. Trautmann. Effect of insulin analogue [Lys(B28), Pro(B29)] on blood glucose control. Horm. Metab. Res. 26:588-590 (1994).

    Google Scholar 

  9. A. Yamamoto, S. Umemori, and S. Muranishi. Absorption enhancement of intrapulmonary administered insulin by various absorption enhancers and protease inhibitors in rats. J. Pharm. Pharmacol. 46:14-18 (1994).

    Google Scholar 

  10. K. Okumura, S. Iwakawa, Y. Tsuguchika, S. Toshimitsu, and F. Komada. Intratracheal delivery of insulin absorption from solution and aerosol by rat lung. Int. J. Pharm. 88:63-73 (1992).

    Google Scholar 

  11. S. Saurez, L. Garcia-Contreras, D. Sarubbi, E. Flanders, D. O'Toole, J. Smart, and A. J. Hickey. Facilitation of pulmonary insulin absorption by H-MAP: Phamacokinetics and pharmacodynamics in rats. Pharm. Res. 18:1677-1684 (2001).

    Google Scholar 

  12. D. J. Pillion, J. A. Atchison, C. Gargiulo, R. X. Wang, P. Wang, and E. Meezan. Insulin delivery in nosedrops: New formulations containing alkylglycosides. Endocrinology 135:1386-1391 (1994).

    Google Scholar 

  13. F. Ahsan, J. Arnold, E. Meezan, and D. J. Pillion. Enhanced bioavailability of calcitonin formulated with alkylglycosides following nasal and ocular administration in rats. Pharm. Res. 18:1742-1746 (2001).

    Google Scholar 

  14. D. J. Pillion, P. Wang, J. Yorks, P. McCann, and E. Meezan. Systemic absorption of insulin and glucagon applied topically to the eyes of rats and a diabetic dog. J. Ocul. Pharmacol. Ther. 11:283-295 (1995).

    Google Scholar 

  15. D. J. Pillion, F. Ahsan, J. Arnold, B. M. Balasubramaniam, O. Piraner, and E. Meezan. Synthetic long chain alkyl maltosides and alkyl sucrose esters as enhancers of nasal insulin absorption. J. Pharm. Sci. 91:1456-1462 (2002).

    Google Scholar 

  16. D. J. Pillion, J. A. Atchison, R. X. Wang, and E. Meezan. Alkylglycosides enhance systemic absorption of insulin applied topically to the rat eye. J. Pharmacol. Exp. Ther. 271:1274-1280 (1994).

    Google Scholar 

  17. T. Irie and K. Uekama. Cyclodextrins in peptide and protein delivery. Adv. Drug Del. Rev 36:101-123 (1999).

    Google Scholar 

  18. F. W. H. M. Merkus, J. C. Verhoef, S. G. Romeijn, and N. G. M. Schipper. Absorption enhancing effect of cyclodextrins on intranasally administered insulin in rats. Pharm. Res. 8:588-592 (1991).

    Google Scholar 

  19. S. A. Francis, J. M. Kelly, J. McCormack, R. A. Rogers, J. Lai, E. E. Schneeberger, and R. D. Lynch. Rapid reduction of MDCK cell cholesterol by methyl-β-cyclodextrin alters steady-state transepithelial electrical resistance. Eur. J. Cell Biol. 78:473-484 (1991).

    Google Scholar 

  20. M. A. Bagger, H. W. Nielson, and E. Bechgaard. Nasal bioavailability of peptide T in rabbits: Absorption enhancement by sodium glycocholate and glycofurol. Eur. J. Pharm. Sci. 14:69-74 (2001).

    Google Scholar 

  21. J. Arnold, F. Ahsan, E. Meezan, and D. J. Pillion. Nasal administration of low molecular weight heparin. J. Pharm. Sci. 91:1707-1714 (2002).

    Google Scholar 

  22. D. J. Pillion, J. D. Bartlett, E. Meezan, M. Yang, J. R. Crain, and W. F. Grizzle. Systemic absorption of insulin delivered topically to the rat eye. Invest. Ophthalmol. Vis. Sci. 32:3021-3027 (1991).

    Google Scholar 

  23. J. L. Izzo, A. M. Roncone, D. L. Helton, and M. J. Izzo. Deposition of 131I proinsulin in the rat. Comparisons with 131I insulin. Diabetes 27:400-410 (1978).

    Google Scholar 

  24. J. C. Soddy, F. R. Sodoyez-Goffaux, and Y. M. Morris. 125I-Insulin: Kinetics of interaction with its receptors and rate of degradation in vivo. Am. J. Physiol. 239:E3-E11 (1980).

    Google Scholar 

  25. S. P. Newman. Therapeutic aerosols. In S. W. Clarke and D. Pavia (eds.), Aerosol and the Lung: Clinical and the Experimental Aspect, Butterworths, London, 1984, pp. 197-224.

    Google Scholar 

  26. R. A. Rajewski and V. J. Stella. Pharmaceutical applications of cyclodextrins. 2. In Vivo Drug delivery. J. Pharm. Sci. 85:1142-1169 (1996).

    Google Scholar 

  27. S. Kobayashi, S. Konda, and K. Juni. Pulmonary delivery of salmon calcitonin dry powders containing absorption enhancers in rats. Pharm. Res. 13:80-83 (1996).

    Google Scholar 

  28. M. Lovatt, A. Cooper, and P. Camilleri. Energetics of cyclodextrin induced dissociation of insulin. Eur. Biophys. J. 24:354-357 (1996).

    Google Scholar 

  29. K. Tokihiro, T. Irie, and K. Uekama. Varying effects of cyclodextrin derivatives on aggregation and thermal behavior of insulin in aqueous solution. Chem. Pharm. Bull. 45:525-531 (1997).

    Google Scholar 

  30. Z. Shao, R. Krishnamoorty, and A. K. Mitra. Cyclodextrins as nasal absorption promoters of insulin: Mechanistic evaluations. Pharm. Res. 9:1157-1163 (1992).

    Google Scholar 

  31. M. Eljamal, S. Nagarajan, and J. S. Patton. In situ and in vivo methods for pulmonary delivery. In R. T. Borchardt, P. L. Smith, and G. Wilson (eds.), Models for Assessing Drug Absorption and Metabolism, Plenum, New York, 1996, pp. 361-374.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hussain, A., Yang, T., Zaghloul, AA. et al. Pulmonary Absorption of Insulin Mediated by Tetradecyl-β-Maltoside and Dimethyl-β-Cyclodextrin. Pharm Res 20, 1551–1557 (2003). https://doi.org/10.1023/A:1026118813943

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026118813943

Navigation