Skip to main content
Log in

New Insight into the Structure and Regulation of the Plant Vacuolar H+-ATPase

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Plant cells are characterized by a highly active secretory system that includes the large central vacuole found in most differentiated tissues. The plant vacuolar H+-ATPase plays an essential role in maintaining the ionic and metabolic gradients across endomembranes, in activating transport processes and vesicle dynamics, and, hence, is indispensable for plant growth, development, and adaptation to changing environmental conditions. The review summarizes recent advances in elucidating the structure, subunit composition, localization, and regulation of plant V-ATPase. Emerging knowledge on subunit isogenes from Arabidopsis and rice genomic sequences as well as from Mesembryanthemum illustrates another level of complexity, the regulation of isogene expression and function of subunit isoforms. To this end, the review attempts to define directions of future research on plant V-ATPase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, G. J., Chu, S. P., Schumacher, K., Shimazaki, C. T., Vafeados, D., Kemper, A., Hawke, S. K., Tallmann, G., Tsien, R. Y., Harper, J. F., Chory, J., and Schroeder, J. I. (2000). Science 289, 2338–2342.

    PubMed  Google Scholar 

  • Baeuerle, C., Ho, M. N., Lindorfer, M. A., and Stevens, T. H. (1993). J. Biol. Chem. 268, 12749–12757.

    PubMed  Google Scholar 

  • Baeuerle, C., Magembe, C., and Briskin, D.P. (1998). Plant Physiol. 117, 859–867.

    PubMed  Google Scholar 

  • Betz, M., and Dietz, K. J. (1991). Plant Physiol. 97, 1294–1301.

    Google Scholar 

  • Chen, X., Kanokporn, T., Zeng, Q., Wilkins, T. A., and Wood, A. J. (2002). J. Exp. Bot. 53, 225–232.

    PubMed  Google Scholar 

  • Cheng, N. H., Pittman, J. K., Barkla, B. J., Shigaki, T., and Hirschi, K. D. (2003). Plant. Cell. 15, 347–364.

    PubMed  Google Scholar 

  • Davies, J. M., Hunt, I., and Sanders, D. (1994). Proc. Natl. Acad. Sci. U.S.A. 91, 8547–8551.

    PubMed  Google Scholar 

  • Davies, J. M., Poole, R. J., and Sanders, D. (1993). Biochim. Biophys. Acta 1141, 29–36.

    Google Scholar 

  • Dietz, K.-J. (in press). Intern. Rev. Cytol.

  • Dietz, K.-J., Rudloff, S., Ageorges, A., Eckerskorn, C., Fischer, K., and Arbinger, B. (1995). Plant J. 8, 521–529.

    PubMed  Google Scholar 

  • Dietz, K.-J., Tavakoli, N., Kluge, C., Mimura, T., Sharma, S. S., Harris, G. C., Chardonnens, A. N., and Golldack, D. (2001). J. Exp. Bot. 52, 1969–1980.

    PubMed  Google Scholar 

  • Domgall, I., Venzke, D., Lüttge, U., Ratajczak, R., and Böttcher, B. (2002). J. Biol. Chem. 277, 13115–13121.

    PubMed  Google Scholar 

  • Drobny, M., Schnölzer, M., Fiedler, S., Lüttge, U., Fischer-Schliebs, E., Christian, A. L., and Ratajczak, R. (2002). Biochim. Biophys. Acta 1564, 243–255.

    PubMed  Google Scholar 

  • Feng, Y., and Forgac, M. (1994). J. Biol. Chem. 269, 13224–13230.

    PubMed  Google Scholar 

  • Fischer-Schliebs, E., Ball, E., Berndt, E., Besemfelder-Butz, E., Binzel, M. L., Drobny, M., Mühlenhoff, D., Müller, M. L., Rakowski, K., and Ratajczak, R. (1997). Biol. Chem. 278, 1131–1139.

    Google Scholar 

  • Frey, R. K., and Randall, S. K. (1998). Plant Physiol. 118, 137–147.

    PubMed  Google Scholar 

  • Garbarino, J., and Dupon, F. M. (1988). Plant Physiol. 86, 231–236.

    Google Scholar 

  • Golldack, D., and Dietz, K. J. (2001). Plant Physiol. 125, 1643–1654.

    PubMed  Google Scholar 

  • Grüber, G., Svergun, D. I., Godovac-Zimmermann, J., Harvey, W. R., Wieczorek, H., and Koch, M. H. J. (2000). J. Biol. Chem. 275, 30082–30087.

    PubMed  Google Scholar 

  • Hager, A., and Biber, W. (1984). Z. Naturforsch. 39c, 927–937.

    Google Scholar 

  • Herman, E. M., Li, X., Su, R. T., Larsen, P., Hsu, H., and Sze, H. (1994). Plant Physiol. 106, 1313–1324.

    PubMed  Google Scholar 

  • Hirschl, D., Bayer, P., and Muller, O. (1996). FEBS Lett. 383, 31–36.

    PubMed  Google Scholar 

  • Ho, M. N., Hirata, R., Umemoto, N., Ohya, Y., Takatsuki, A., Stevens, T. H., and Anraku, Y. (1993). J. Biol. Chem. 268, 18286–18292.

    PubMed  Google Scholar 

  • Junge, W., Lill, H., and Engelbrecht, S. (1997). Trends Biochem. Sci. 22, 420–423.

    PubMed  Google Scholar 

  • Kasamo, K., Yamaguchi, M., and Nakamura, Y. (2000). Plant Cell Physiol. 41, 840–849.

    PubMed  Google Scholar 

  • Kawamura, Y., Arakawa, K., Maeshima, M., and Yoshida, S. (2001). Eur. J. Biochem. 268, 2801–2809.

    PubMed  Google Scholar 

  • Kawasaki-Nishi, S., Nishi, T., and Forgac, M. (2001). Proc. Natl. Acad. Sci. U.S.A 98, 12397–12402.

    PubMed  Google Scholar 

  • Kirsch, T., Paris, N., Butler, J. M., Beevers, L., and Rogers, J. C. (1994). Proc. Natl. Acad. Sci. U.S.A. 91, 3403–3407.

    PubMed  Google Scholar 

  • Klink, R., and Lüttge, U. (1991). Bot. Acta 104, 122–131.

    Google Scholar 

  • Kluge, C., Lamkemeyer, P., Tavakoli, N., Golldack, D., Kandlbinder, A., and Dietz, K. J. (2003). Mol. Membr. Biol. 20, 171–183.

    PubMed  Google Scholar 

  • Landolt-Marticorena, C., Williams, K. M., Correa, J., Chen, W., and Manolsen, M. F. (2000). J. Biol. Chem. 275, 15449–15457.

    Google Scholar 

  • Lee Taiz S., and Taiz, L. (1991). Bot. Acta 104, 117–121.

    Google Scholar 

  • Leng, X. H., Manolson, M. F., Liu, Q., and Forgac, M. (1996). J. Biol. Chem. 271, 22487–22493.

    PubMed  Google Scholar 

  • Li, X., and Sze, H. (1999). Plant J. 17, 19–30.

    PubMed  Google Scholar 

  • Ludwig, J., Kerscher, S., Brandt, U., Pfeiffer, K., Getlawi, F., Apps, D. K., and Schägger, H. (1998). J. Biol. Chem. 273, 10939–10947.

    PubMed  Google Scholar 

  • Lüttge, U., Fischer-Schliebs, E., and Ratajczak, R. (2001). Cell. Mol. Biol. Lett. 6, 356–361.

    Google Scholar 

  • Maeshima, M. (2000). Bio. Biophys. Acta 1465, 37–51.

    Google Scholar 

  • Martinoia, E. (1992). Bot. Acta 105, 232–245.

    Google Scholar 

  • Martiny-Baron, G., Manolson, M. F., Poole, R. J., Hecker, D., and Scherer, G. F. E. (1992). Plant Physiol. 99, 1635–1641.

    Google Scholar 

  • Matsuoka, K., Higuchi, T., and Maeshima, M. (1997). Plant Cell 9, 533–546.

    PubMed  Google Scholar 

  • Merzendorfer, H., Huss, M., Schmid, R., Harvey, W.R., and Wieczorek, H. (1999). J. Biol. Chem. 274, 17372–17378.

    PubMed  Google Scholar 

  • Mimura, T., Kura-Hotta, M., Tsujimura, T., Ohnishi, M., Miura, M., Okazaki, Y., Mimura, M., Maeshima, M., and Washitani-Nemoto, S. (2003). Planta 216, 397–402.

    PubMed  Google Scholar 

  • Müller, M. L., Irkens-Kiesecker, U., Rubinstein, B., and Taiz, L. (1996). J. Biol. Chem. 271, 1916–1924.

    PubMed  Google Scholar 

  • Müller, M. L., Jensen, M., and Taiz, L. (1999). J. Biol. Chem. 274, 10706–10716.

    PubMed  Google Scholar 

  • Müller, M. L., and Taiz, L. (2002). J. Membr. Biol. 185, 209–220.

    PubMed  Google Scholar 

  • Narasimhan, M. L., Binzel, M. L., Perez-Prat, E., Chen, Z., Nelson, D. E., Singh, N. K., Bressan, R. A., and Hasegawa, P. M. (1991). Plant Physiol. 97, 562–568.

    Google Scholar 

  • Nelson, N., and Taiz, L. (1989). Trends Biochem. Sci. 14, 113–116.

    PubMed  Google Scholar 

  • Noji, H., Yasuda, R., Yoshida, M., and Kinosita, K., Jr. (1997). Nature 386, 299–302.

    PubMed  Google Scholar 

  • Powell, B., Graham, L. A., and Stevens, T. H. (2000). J. Biol. Chem. 275, 23654–23660.

    PubMed  Google Scholar 

  • Radermacher, M., Ruiz, T., Wieczorek, H., and Grüber, G. (2001). J. Struct. Biol. 135, 26–37.

    PubMed  Google Scholar 

  • Ratajczak, R. (2000). Biochim. Biophys. Acta 1465, 17–36.

    PubMed  Google Scholar 

  • Ratajczak, R., Richter, J., and Lüttge, U. (1994). Plant Cell Environ. 17, 1101–1112.

    Google Scholar 

  • Rizzo, V. F., Coskun, U., Radermacher, M., Ruiz, T., Armbruster, A., and Grüber, G. (2003). J. Biol. Chem. 278, 270–275.

    PubMed  Google Scholar 

  • Robinson, D. G., Haschke, H. P., Hinz, G., Hoh, B., Maeshima, M., and Marty, F. (1996a). Planta 198, 95–103.

    Google Scholar 

  • Robinson, D. G., Hoppenrath, M., Oberbeck, K., Luykx, P., and Ratajczak, R., (1996b). Bot. Acta 111, 108–122.

    Google Scholar 

  • Rouquie, D., Tournaire-Roux, C., Szponarski, W., Rossignol, M., and Doumas, P. (1998). FEBS Lett. 437, 287–292.

    PubMed  Google Scholar 

  • Sagermann, M., Stevens, T. H., and Matthews, B. W. (2001). Proc. Natl. Acad. Sci. U.S.A. 98, 7134–7139.

    PubMed  Google Scholar 

  • Schnepf, E. (1983). In Biophysics (Hoppe, W., Lohmann, Markl, W. H., and Ziegler, H. J., eds.), Springer-Verlag, Berlin.

    Google Scholar 

  • Schumacher, K., Vafeados, D., McCarthy, M., Sze, H., Wilkins, T., and Chory, J. (1999). Genes Dev. 13, 3259–3270.

    PubMed  Google Scholar 

  • Supekova, L., Sbia, M., Supek, F., Ma, Y. M., and Nelson, N. (1996). J. Exp. Biol. 119, 1147–1156.

    Google Scholar 

  • Sze, H., Schumacher, K., Müller, M. L., Padmanaban, S., and Taiz, L. (2002). Trends Plant Sci. 7, 157–161.

    PubMed  Google Scholar 

  • Taiz, L., Zeiger, E. (1998). In Plant physiology (Taiz, L., and Zeiger, E., eds), Sinauer Sunderland, MA, pp. 125–152.

  • Tavakoli, N., Kluge, C., Golldack, D., Mimura, T., and Dietz, K.-J. (2001). Plant J. 28, 51–60.

    PubMed  Google Scholar 

  • Terrier, N., Sauvage, F. X., Ageorges, A., and Romieu, C. (2001). Planta 213, 20–28.

    PubMed  Google Scholar 

  • The Arabidopsis Genome Iniative (2000). Nature 408, 796–815.

    Google Scholar 

  • Tomashek, J. J., Sonnenburg, J. L., Artimovich, J. M., and Klionsky, D. J. (1996). J. Biol. Chem. 271, 10397–10404.

    PubMed  Google Scholar 

  • Wang, B., Lüttge, U., and Ratajczak, R. (2001). J. Exp. Bot. 52, 2355–2365.

    PubMed  Google Scholar 

  • Wang, S. Y., Moriyama, Y., Mandel, M., Hulmes, J. D., Pan, Y. C., Danho, W., Nelson, H., and Nelson, N. (1988). J. Biol. Chem. 263, 17638–17643.

    PubMed  Google Scholar 

  • Wilkens, S., and Forgac, M. (2001). J. Biol. Chem. 276, 44064–44068.

    PubMed  Google Scholar 

  • Wilkens, S., Vasilyeva, E., and Forgac, M. (1999). J. Biol. Chem. 274, 31804–31810.

    PubMed  Google Scholar 

  • Wood, A. J., Duff, R. J., and Oliver, M. J. (2000). J. Exp. Bot. 51, 1655–1662.

    PubMed  Google Scholar 

  • Xu, T., Vasilyeva, E., and Forgac, M. (1999). J. Biol. Chem. 274, 28909–28915.

    PubMed  Google Scholar 

  • Yabe, L., Horiuchi, K., Nakahara, K., Hiyama, T., Yamanaka, T., Wang, P. C., Toda, K., Hirata, A., Ohsumi, Y., Hirata, R., Anraku, Y., and Kusaka, L. (1999). J. Biol. Chem. 274, 34903–34910.

    PubMed  Google Scholar 

  • Yamaguchi, M., and Kasamo, K. (2001). Plant Cell Physiol. 42, 516–523.

    PubMed  Google Scholar 

  • Yamanishi, H., and Kasamo, K. (1993). Plant Cell Physiol. 34, 411–419.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Josef Dietz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kluge, C., Lahr, J., Hanitzsch, M. et al. New Insight into the Structure and Regulation of the Plant Vacuolar H+-ATPase. J Bioenerg Biomembr 35, 377–388 (2003). https://doi.org/10.1023/A:1025737117382

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025737117382

Navigation