Skip to main content
Log in

Effect of valspodar on the pharmacokinetics of unbound paclitaxel

  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Abstract

The aim of this multicenter study was to determine whether valspodar (Amdray™; code designation, SDZ PSC 833), a potent P-glycoprotein (P-gp) inhibitor, affects the pharmacokinetics of unbound paclitaxel (C u). Data were obtained from 31 patients with advanced breast cancer. Thirteen patients were treated with paclitaxel alone (3-h infusion at 175mg/m2) and another 18 received paclitaxel (3-h infusion at 70mg/m2) in combination with a 21-day cycle of oral valspodar (5mg/kg given four times a day) starting 1 day before administration of paclitaxel. Serial blood samples were taken in the first course and C u in plasma determined using equilibrium dialysis with a [G-3H]paclitaxel tracer. The apparent clearance of C u was not significantly different between the two groups, with mean ± standard deviation (±SD) values of 230 ± 56.0 and 202 ± 49.9L/h/m2 in the absence and presence of valspodar, respectively (P = 0.17). The volume of C u distribution was slightly larger in the presence of valspodar (1160 ± 474 vs. 1620 ± 552L/m2; P = 0.025), which contributed to a minor difference in the terminal disposition half-life (6.12 ± 3.42 vs. 8.50 ± 2.06h; P = 0.028). These data indicate that (i) valspodar lacks the significant interaction with paclitaxel observed previously with other P-gp modulators, (ii) the majority of the increased toxicity of the combination does not appear to be attributable to increased levels of C u, and (iii) provide further evidence of the conjecture that the plasma concentration of paclitaxel may not be an appropriate measure to monitor the impact of P-gp inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gottesman MM, Fojo T, Bates S: Multidrug resistance in cancer: role of AT-dependent transporters. Nature Rev Cancer 2: 48–58, 2002

    Google Scholar 

  2. Van Zuylen L, Nooter K, Sparreboom A, Verweij J: Development of multidrug-resistance convertors: sense or nonsense? Invest New Drugs 18: 205–220, 2000

    Google Scholar 

  3. Sparreboom A, Nooter K: Does P-glycoprotein play a role in anticancer drug pharmacokinetics? Drug Resis Updates 3: 357–363, 2000

    Google Scholar 

  4. Kroemer HK, Gautier JC, Beaune P, Henderson C, Wolf CR, Eichelbaum M: Identification of P450 enzymes involved in metabolism of verapamil in humans. Arch Pharmacol 348: 332–337, 1993

    Google Scholar 

  5. Kronbach T, Fischer V, Meyer UA: Cyclosporine metabolism in human liver: identification of a cytochrome P-450III gene family as the major cyclosporine-metabolizing enzyme explains interactions of cyclosporine with other drugs. Clin Pharmacol Ther 43: 630–635, 1988

    Google Scholar 

  6. Fischer V, Rodriguez-Gaston A, Heitz F, Tynes R, Hauck C, Cohen D, Vickers AE: The multidrug resistance modulator valspodar (PSC 833) is metabolized by human cytochrome P450 3A: implications for drug-drug interactions and pharmacological activity of the main metabolite. Drug Metab Dispos 26: 802–811, 1998

    Google Scholar 

  7. Boesch D, Gaveriaux C, Jachezs B, Poutier-Manzanedo A, Bollinger P, Loor F: In vivo circumvention of P-glycoprotein mediated multidrug resistance of tumor cells with SDZ PSC 833. Cancer Res 51: 4226–4233, 1991

    Google Scholar 

  8. Boote D, Dennis P, Twentyman P, Osborne RJ, Hensel S, Smyth JF, Brampton MH, Bleehen NM: Phase I study of etoposide with SDZ PSC 833 as a modulator of multidrug resistance in patients with cancer. J Clin Oncol 14: 610–618, 1996

    Google Scholar 

  9. Giaccone G, Linn SC, Welink J, Catimel G, Stieltjes H, Van der Vijgh WJ, Eeltink C, Vermorken JB, Pinedo HM: A dose finding and pharmacokinetic study of reversal of multidrug resistance with PSC 833 in combination with doxorubicin in patients with solid tumors. Clin Cancer Res 3: 2005–2015, 1997

    Google Scholar 

  10. Harris JW, Rahman A, Kim BR, Guengerich FP, Collins JM: Metabolism of taxol by human hepatic microsomes and liver slices: participation of cytochrome P450 3A4 and an unknown P450 enzyme. Cancer Res 54: 4026–4035, 1994

    Google Scholar 

  11. Arzoo KK, Doroshow J, Frankel P, Gandara D, Groshen S, Muggia F, Russell C, Spicer DC, Synold T, Waisman J, Warner E: Valspodar (V) + paclitaxel (P) in advanced breast cancer: a California Cancer Consortium phase II randomized trial. Proc Am Soc Clin Oncol 19: 205a, 2000 (Abstract)

    Google Scholar 

  12. Brouwer E, Verweij J, De Bruijn P, Loos WJ, Pillay M, Buijs D, Sparreboom A: Measurement of fraction unbound paclitaxel in human plasma. Drug Metab Dispos 28: 1141–1145, 2000

    Google Scholar 

  13. Sparreboom A, De Bruijn P, Nooter K, Loos WJ, Stoter G, Verweij J: Determination of paclitaxel in human plasma using single solvent extraction prior to isocratic reversed-phase high-performance liquid chromatography with ultraviolet detection. J Chromatogr B 705: 159–164, 1998

    Google Scholar 

  14. Sparreboom A, Loos WJ, Verweij J, De Vos AI, Van der Burg MEL, Stoter G, Nooter K: Quantitation of Cremophor EL in human plasma samples using a colorimetric dye-binding microassay. Anal Biochem 255: 171–175, 1998

    Google Scholar 

  15. Brouwer E, Verweij J, Hauns B, Loos WJ, Nooter K, Mross K, Stoter G, Sparreboom A: Linearized colorimetric assay for Cremophor EL. application to pharmacokinetics after 1–hour paclitaxel infusions. Anal Biochem 261: 198–202, 1998

    Google Scholar 

  16. Henningsson A, Karlsson MO, Vigano L, Gianni L, Verweij J, Sparreboom A: Mechanism-based pharmacokinetic model for paclitaxel. J Clin Oncol 19: 4065–4073, 2001

    Google Scholar 

  17. Sparreboom A, Verweij J, Van der Burg MEL, Loos WJ, Brouwer E, Vigano L, Locatelli A, De Vos, AI, Nooter K, Stoter G, Gianni L: Disposition of Cremophor EL in humans limits the potential for modulation of the multidrug resistance phenotype. Clin Cancer Res 4: 1937–1942, 1998

    Google Scholar 

  18. Gelderblom H, Mross K, Ten Tije AJ, Behringer D, Mielke S, Van Zomeren DM, Verweij J, Sparreboom A: Comparative pharmacokinetics of unbound paclitaxel during 1–and 3–hour infusions. J Clin Oncol 20: 574–581, 2002

    Google Scholar 

  19. Smorenburg CH, Ten Tije AJ, Verweij J, Bontenbal M, Mross K, Van Zomeren DM, Seynaeve C, Sparreboom A: Altered clearance of unbound paclitaxel in elderly patients with metastatic breast cancer. Eur J Cancer 39: 196–202, 2003

    Google Scholar 

  20. Van Zuylen L, Gianni L, Verweij J, Mross K, Brouwer E, Loos WJ, Sparreboom A: Interrelationships of paclitaxel disposition, infusion duration and Cremophor EL kinetics in cancer patients. Anticancer Drugs 11: 3331–3337, 2000

    Google Scholar 

  21. Collins HL, Fisher GA, Hausdorff J, Lum BL, Pearce T, Halsey J, Sikic BI: Phase I study of paclitaxel in combination with SDZ PSC 833, a multidrug resistance modulator. Proc Am Soc Clin Oncol 14: 181a, 1995 (Abstract)

    Google Scholar 

  22. Fracasso PM, Westerveldt P, Fears CA, Rosen M, Zuhowski EG, Cazenave LA, Litchman M, Egorin MJ: Phase I study of paclitaxel in combination with a multidrug resistance modulator, PSC 833 (valspodar), in refractory malignancies. J Clin Oncol 18: 1124–1134, 2000

    Google Scholar 

  23. Patnaik A, Warner E, Michael M, Egorin MJ, Moore MJ, Siu LL, Fracasso PM, Rivkin S, Kerr I, Litchman M, Oza AM: Phase I dose-finding and pharmacokinetic study of paclitaxel and carboplatin with oral valspodar in patients with advanced solid tumors. J Clin Oncol 18: 3677–3689, 2000

    Google Scholar 

  24. Advani R, Fisher GA, Lum BL, Hausdorff J, Halsey J, Litchman M, Sikic BI: A phase I trial of doxorubicin, paclitaxel, and valspodar (PSC 833), a modulator of multidrug resistance. Clin Cancer Res 7: 1221–1229, 2001

    Google Scholar 

  25. Chico I, Kang MH, Bergan R, Abraham J, Bakke S, Meadows B, Rutt A, Robey R, Choyke P, Merino M, Goldspiel B, Smith T, Steinberg S, Figg WD, Fojo T, Bates S: Phase I study of infusional paclitaxel in combination with the P-glycoprotein antagonist PSC 833. J Clin Oncol 19: 832–842, 2001

    Google Scholar 

  26. Gianni L, Kearns CM, Giani A, Capri G, Vigano L, Locatelli A, Bonadonna G, Egorin MJ: Nonlinear pharmacokinetics and metabolism of paclitaxel and its pharmacokinetic/pharmacodynamic relationships in humans. J Clin Oncol 13: 180–190, 1995

    Google Scholar 

  27. Van Zuylen L, Karlsson MO, Verweij J, Brouwer E, De Bruijn P, Nooter K, Stoter G, Sparreboom A: Pharmacokinetic modeling of paclitaxel encapsulation in Cremophor EL micelles. Cancer Chemother Pharmacol 47: 309–318, 2001

    Google Scholar 

  28. Gelderblom H, Verweij J, Nooter K, Sparreboom A: Cremophor EL: the downsides and potential of vehicle selection for drug formulation. Eur J Cancer 37: 1587–1595, 2001

    Google Scholar 

  29. Van Zuylen L, Verweij J, Sparreboom A: Role of formulation vehicles in taxane pharmacology. Invest New Drugs 19: 125–141, 2001

    Google Scholar 

  30. Sparreboom A, Van Zuylen L, Brouwer E, Loos WJ, De Bruijn P, Gelderblom H, Pillay M, Nooter K, Stoter G, Verweij J: Cremophor EL mediated alteration of paclitaxel distribution in human blood: clinical pharmacokinetic implications. Cancer Res 59: 1454–1457, 1999

    Google Scholar 

  31. Sparreboom A, Van Tellingen O, Nooijen WJ, Beijnen JH: Nonlinear pharmacokinetics of paclitaxel in mice results from the pharmaceutical vehicle Cremophor EL. Cancer Res 56: 2112–2115, 1996

    Google Scholar 

  32. Sparreboom A, Van Asperen J, Mayer U, Schinkel AH, Smit JW, Meijer DKF, Borst P, Nooijen WJ, Beijnen JH, Van Tellingen O: Limited oral bioavailability and active epithelial excretion of paclitaxel caused by P-glycoprotein in the intestine. Proc Natl Acad Sci USA 94: 2031–2035, 1997

    Google Scholar 

  33. Van Zuylen L, Sparreboom A, Van der Gaast A, Van der Burg MEL, Van Beurden V, Bol CJ, Woestenborghs R, Palmer PA, Verweij, J: The orally administered P-glycoprotein inhibitor R101933 does not alter the plasma pharmacokinetics of paclitaxel. Clin Cancer Res 6: 1365–1371, 2000

    Google Scholar 

  34. Van Zuylen L, Verweij J, Nooter K, Brouwer E, Stoter G, Sparreboom A: Role of intestinal P-glycoprotein in the plasma and fecal disposition of docetaxel in humans. Clin Cancer Res 6: 2598–2603, 2000

    Google Scholar 

  35. Kearns CM, Gianni L, Egorin MJ: Paclitaxel pharmacokinetics and pharmacodynamics. Semin Oncol 22: 16–23, 1995

    Google Scholar 

  36. Kang MH, Figg WD, Ando Y, Blagosklonny MV, Liewehr D, Fojo T, Bates SE: The P-glycoprotein antagonist PSC 833 increases the plasma concentrations of 6α-hydroxypaclitaxel, a major metabolite of paclitaxel. Clin Cancer Res 7: 1610–1617, 2001

    Google Scholar 

  37. Rahmani A, Korzekwa KR, Grohan J, Gonzalez FJ, Harris JW: Selective biotransformation of taxol to 6 alpha-hydroxytaxol by human cytochrome P450 2C8. Cancer Res 54: 5543–5546, 1994

    Google Scholar 

  38. Karlsson MO, Molnar V, Bergh J, Freijs A, Larsson R: A general model for time-dissociated pharmacokinetic-pharmacodynamic relationship exemplified by paclitaxel myelosuppression. Clin Pharmacol Ther 63: 11–25, 1998

    Google Scholar 

  39. Minami H, Sasaki Y, Saijo N, Ohtsu T, Fujii H, Igarashi T, Itoh K: Indirect-response model for the time course of leukopenia with anticancer drugs. Clin Pharmacol Ther 64: 511–521, 1998

    Google Scholar 

  40. Drach D, Zhao S, Drach J, Mahadevia R, Gattringer C, Huber H, Andreeff M: Subpopulations of normal blood and bone marrow cells express a functional multidrug resistance phenotype. Blood 80: 2729–2734, 1992

    Google Scholar 

  41. Tidefelt U, Liliemark J, Gruber A, Liliemark E, Sundman-Engberg B, Juliusson G, Stenke L, Elmhorn-Rosenborg A, Mollgard L, Lehman S, Xu D, Covelli A, Gustavsson B, Paul C: P-glycoprotein inhibitor valspodar (PSC 833) increases the intracellular concentrations of daunorubicin in vivo in patients with P-glycoprotein-positive acute myeloid leukemia. J Clin Oncol 18: 1837–1844, 2000

    Google Scholar 

  42. Lum BL, Kaubisch S, Fisher GA, Brown BW, Sikic BI: Effect of high-dose cyclosporine on etoposide pharmacodynamics in a trial to reverse P-glycoprotein (MDR1 gene) mediated drug resistance. Cancer Chemother Pharmacol 45: 305–311, 2000

    Google Scholar 

  43. Jachez B, Nordmann R, Loor F: Restoration of taxol sensitivity of multidrug-resistance cell by the cyclosporine SDZ PSC 833 and the cyclopeptolide SDZ 280–446. J Natl Cancer Inst 85: 478–483, 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ten Tije, A.J., Synold, T.W., Spicer, D. et al. Effect of valspodar on the pharmacokinetics of unbound paclitaxel. Invest New Drugs 21, 291–298 (2003). https://doi.org/10.1023/A:1025412509730

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025412509730

Navigation