Skip to main content
Log in

The beginnings of research on biophysics of photosynthesis and initial contributions made by Russian scientists to its development

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

In contrast to the classical sciences, biophysics is difficult to define. For example, Roderick Clayton suggested that biophysics requires `solid grounding in physics, chemistry and mathematics together with enough biology and biochemistry' [Clayton RK (1988) Photosynth Res 19: 207–224]. One may see from the proceedings of the recent biophysical congresses that their materials and ideas in a very wide sense are biological, including global geographic and ecological problems. To be recognized as biophysical, either physico-chemical methods or at least some mathematical and computer programs are usually involved in such work. One exception is the biophysics of photosynthesis, which deals with fundamental photophysical processes: the absorption of solar radiation by chlorophylls (Chls) and accessory pigments. The subsequent intermolecular transfer of singlet electronic excitation results in a primary energy conversion manifested as pairs of opposite electric charges separated in the pigment-protein complexes called reaction centers [see Clayton RK (2002) Photosynth Res 73: 63–71]. I review the initial, basic contributions in this field, and the most important accomplishments of Russian scientists in the 20th century.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aksyonov SI, Knox PP, K ononenko AA, Chamorovsky SK and Rubin AB (1997) Mechanism of hydration effect on the structural dynamics and function characteristics of photosynthetic membranes in various purple bacteria. Eur Biophys J 26: 461–470

    Article  CAS  Google Scholar 

  • Arnold WW and Clayton RK (1960) The first step in photosynthesis: evidence for its electronic nature. Proc Natl Acad Sci USA 46: 769–776

    Article  PubMed  CAS  Google Scholar 

  • Belyaeva OB (2003) Studies of chlorophyll biosynthesis in Russia. Photosynth Res 76: 405–411 (this issue)

    Article  PubMed  CAS  Google Scholar 

  • Borisov AY and Godik VI (1970) Fluorescence lifetime of BChl and reaction center photooxidation in a photosynthetic bacterium.Biochim Biophys Acta 221: 441–443

    Google Scholar 

  • Borisov AY and Godik VI (1972) Energy transfer to the reaction centers in bacterial photosynthesis. J Bioenerg 3: 515–523

    Article  PubMed  CAS  Google Scholar 

  • Borisov AY and Il'ina MD (1973) The fluorescence lifetime and energy migration mechanism in Photosystem 1 of plants. Biochim Biophys Acta 305: 364–373

    Article  PubMed  CAS  Google Scholar 

  • Breton J and Mathis P (1970) Mise en evidence de l'état de la chlorophylle dans des lamelles chloroplastique. CR Acad Sci Paris 271 D: 1094–1096

    CAS  Google Scholar 

  • Brody SS (2002) Fluorescence lifetime, yield, energy transfer and spectra in photosynthesis. Photosynth Res 73: 127–132

    Article  PubMed  CAS  Google Scholar 

  • Brody SS and Rabinowich E (1957) Excitation lifetimes of photosynthetic pigments in vitro and in vivo. Science 125: 555–559

    PubMed  CAS  Google Scholar 

  • Campillo AJ and Shapiro SL (1975) Picosecond relaxation measurements in biology In: Shapiro SL (ed) Topics in Applied Physics, Vol 18: Ultrashort Light Pulses. Springer-Verlag, Berlin/ Heidelberg.

    Google Scholar 

  • Campillo AJ, Hyer RC, Monger TG, Parson WW and Shapiro SL (1977) Light collecting and harvesting processes in bacterial photosynthesis in a picosecond time scale. Proc Natl Acad Sci USA 74: 1997–2001

    Article  PubMed  CAS  Google Scholar 

  • Chance B (1951) A new type of high sensitive absorption spectrophotometer. Rev Sci Instr 22: 619–625.

    Article  CAS  Google Scholar 

  • Cho F and Govindjee (1970) Low-temperature (4-77 K) spectroscopy of Chlorella: temperature dependence of energy transfer efficiency. Biochim Biophys Acta 216: 139–150.

    Article  PubMed  CAS  Google Scholar 

  • Clayton RK (1962a) Primary reactions in bacteria photosynthesis. I. The nature of light-induced absorbance changes. Evidence for a special BChl component. Photochem Photobiol 1: 201–210

    CAS  Google Scholar 

  • Clayton RK (1962b) Primary reactions in bacteria photosynthesis.II: the quantum requirement for BChl conversion in chromatophore. Photochem Photobiol 1: 305–311

    CAS  Google Scholar 

  • Clayton RK (1988) Personal perspectives. Memories of many lives. Photosynth Res 19: 207–224

    Google Scholar 

  • Clayton RK (2002) Research on photosynthetic reaction centers from 1932 to 1987. Photosynth Res 73: 63–71

    Article  PubMed  CAS  Google Scholar 

  • Danielius RV, Mineyev AP and Razjivin AP (1989) The cooperativity phenomena in a pigment-protein complex of light-harvesting antenna revealed by picosecond absorbance difference spectroscopy. FEBS Lett 250: 183–186

    Article  CAS  Google Scholar 

  • Deisenhofer J and Michel H (1989) Reaction centers from Rps.viridis. EMBO J 8: 2149–2170

    PubMed  CAS  Google Scholar 

  • Delosme R and Joliot P (2002) Period four oscillations in chlorophyll a fluorescence. Photosynth Res 73: 165–168

    Article  PubMed  CAS  Google Scholar 

  • DeVault D and Chance B (1966) Temperature dependence of Cyt oxidation in Chromatium. Evidence for tunneling. Biophys J 6: 825–847

    Article  PubMed  CAS  Google Scholar 

  • Dmitrievsky OD, Ermolaev VL and Terenin AN (1957) The fluorescence lifetime of chlorophyll a in Chlorella cells. Proc USSR Acad Sci 114: 75–78

    Google Scholar 

  • Döring G, Renger G, Vater J. and Witt H (1969) Properties of the photoactive chlorophyll-aII in photosynthesis. Z Naturforsch 24B: 623–629

    Google Scholar 

  • Drachev LA, Frolov VN, Kaulen AD, Liberman EA, Ostroumov SA, Plakunova VG, Semenov AY and Skulachev VP (1976) Reconstitution of biological molecular generators of electric current. J Biol Chem 251: 7059–7065

    PubMed  CAS  Google Scholar 

  • Drachev LA, Semenov AY, Skulachev VP, Smirnona IA, Chamorovsky SK, Kononenko AA, Rubin AB and Uspenskaya Ny (1981) Fast stages of photoelectric processes in biological membranes. Eur J Biochem 117: 482–489

    Google Scholar 

  • Dutton H J (1997) Carotenoid sensitized photosynthesis. Photosynth Res 52: 175–185

    Article  CAS  Google Scholar 

  • Duysens LNM (1952) Transfer of excitation energy in photosynthesis. Thesis, Utrecht University, Utrecht, The Netherlands

    Google Scholar 

  • Duysens LNM (1963) The mechanism of two photochemical reactions in algae as studied by means of fluorescence. Proc R Soc Biol 157: 301–310

    Article  CAS  Google Scholar 

  • Duysens LNM, Amesz J and Kamp BM (1961) Two photochemical systems in photosynthesis. Nature 190: 510–511

    Article  PubMed  CAS  Google Scholar 

  • Emerson R (1958) The quantum yield of photosynthesis. Annu Rev Plant Physiol 9: 1–24

    Article  CAS  Google Scholar 

  • Emerson R and Arnold WW (1932a) A separation of the reactions of photosynthesis by intermittent light. J Gen Physiol 15: 391–420

    Article  CAS  Google Scholar 

  • Emerson R and Arnold WW (1932b) The photochemical reaction in photosynthesis. J Gen Physiol 16: 191–205

    Article  CAS  Google Scholar 

  • Emerson R and Lewis CM (1943) The dependence of the quantum yield of Chlorella photosynthesis on wavelength of light. Am J Bot 30: 165–178

    Article  CAS  Google Scholar 

  • Evstigneev VB (1968) Redox photoconversions of chlorophylls and other porphyrines. In: Neporent BS (ed) Elementary Photoprocesses in Molecules, pp 184–200. Plenum Press, New York

    Google Scholar 

  • Feher G, Allen JP, Okamura M and Rees DC (1989) Structure of the reaction center from Rhodobacterium sphaeroides R-26. Nature 339: 111–116

    Article  CAS  Google Scholar 

  • Fetisova ZG, Freiberg AM and Timpmann KE (1988) Long-range molecular order as an efficient strategy for light-harvesing in photosynthesis. Nature 334: 633–634

    Article  CAS  Google Scholar 

  • Fok MV and Borisov AY (1981) Water and energy conversion in photosynthesis. Studia Biophys 84: 115–124

    CAS  Google Scholar 

  • Förster T (1960) Excitation transfer in (Burton M, Kirby-Smith JS and Magee JL (eds) Comparative Effects of Radiation, pp 300–341. John Wiley and Sons, New York

    Google Scholar 

  • Freiberg AM, Godik VI, Kharchenko SG, Timpmann KE, Borisov AY and Rebane KK (1985) Picosecond fluorescence of reaction centers from Rs. rubrum. FEBS Lett 189: 341–344

    Article  CAS  Google Scholar 

  • Gaffron H and Wohl K (1936a) Zur theorie der assimilation. Naturwissenschaften 24: 81–90

    Article  CAS  Google Scholar 

  • Gaffron H and Wohl K (1936b) Zur theorie der assimilation. Naturwissenschaften 24 103–107

    Article  Google Scholar 

  • Godik VI and Borisov AY (1977) Excitation trapping by different states of reaction centers. FEBS Lett 82: 355–358

    Article  PubMed  CAS  Google Scholar 

  • Godik VI, Kotova EA and Samuilov VD (1980) Membrane potential effect on nanosecond recombination luminescence in Rhodospirillum rubrum. FEBS Lett 119: 121–124

    Article  Google Scholar 

  • Govindjee (1999) On the requirement of minimum of four versus eight quanta of light for the evolution of one molecule of oxygen in photosynthesis: a historical note. Photosynth Res 59: 249–254

    Article  CAS  Google Scholar 

  • Govindjee (2000) Milestones in photosynthesis research. In: Younis M, Pathre U and Govindjee (eds) Probing Photosynthesis, pp 9–39. Taylor and Francis, New York

    Google Scholar 

  • Govindjee and Gest H (2002) Celebrating the millennium-historical highlights of photosynthesis research. Photosynth Res 73: 1–6

    Article  Google Scholar 

  • Govindjee and Jursinic P (1979) Photosynthesis and fast changes in light emission by green plants. Photochem Photobiol Rev 4: 125–205

    CAS  Google Scholar 

  • Govindjee and Rabinowich E (1960) Two forms of Chl a with distinct photochemical function. Science 132: 355–356

    PubMed  CAS  Google Scholar 

  • Govindjee, Amesz J and Fork DC (eds) (1986) Light Emission by Plants and Bacteria. Academic Press, New York

    Google Scholar 

  • Govindjee, Beatty JT and Gest H (2003) Celebrating the millennium - historical highlights of photosynthesis research, Part 2. Photosynth Res 76: 1–11 (this issue)

    Article  CAS  Google Scholar 

  • Grigorov LN and Chernavsky DS (1972) Electron tunneling between cytochrome-c and bacteriochlorophyll-a in purple bacterium. Biophysika 17: 2–11

    Google Scholar 

  • Gurinovich GP, Sevchenko AN and Solov'ev KN (1968) Spectroscopy of chlorophylls and related compounds, Nauka, Minsk

    Google Scholar 

  • Joliot P (2003) Period-four oscillations of the flash-induced oxygen formation in photosynthesis. Photosynth Res 76: 65–72 (this issue)

    Article  PubMed  CAS  Google Scholar 

  • Joliot P and Kok B (1975) Oxygen evolution in photosynthesis. In: Govindjee (ed) Bioenergetics of Photosynthesis, pp 387–412. Academic Press, New York

    Google Scholar 

  • Karapetyan NV, Litvin FF and Krasnovsky AA (1963) Fluorescence changes which accompany redox transitions in photosynthetic reaction centers. Docladi USSR Acad Sci 149: 1428–1431

    CAS  Google Scholar 

  • Kenkre V and Knox RS (1974) Excitaton transfer and memory functions of chlorophylls. Phys Rev 33: 803–807

    CAS  Google Scholar 

  • Klimov VV (2003) Discovery of pheophytin function in the photosynthetic energy conversion as the primary electron acceptor of Photosystem II. Photosynth Res 76: 247–253 (this issue)

    Article  PubMed  CAS  Google Scholar 

  • Klimov VV, Klevanik AV, Shuvalov VA and Krasnovsky AA (1977) Reduction of pheophytin in the primary light reaction of Photosystem 2. FEBS Lett82: 183–186

    Article  PubMed  CAS  Google Scholar 

  • Klimov VV, Dolan E, Shaw ER and Ke B (1980) Interaction between the intermediary electron acceptor (pheophytin) and a possible plastoquinone-iron complex in Photosystem 2 reaction centers. Proc Nat Acad Sci USA 77: 7227–7231

    Article  PubMed  CAS  Google Scholar 

  • Kok B (1961) Partial purification and determination of redox potential of the photosynthetic Chl complex absorbing at 700nanometers. Biochim Biophys Acta 48: 527–533

    Article  PubMed  CAS  Google Scholar 

  • Krasnovsky AA (1948) Reversible photochemical reduction of chlorophyll by ascorbic acid. Docl Acad Nauk USSR 60: 421–424

    Google Scholar 

  • Krasnovsky AA (1997) A lifetime journey with photosynthesis. In: Semenza G and Jaenicke R (eds) Selected Topics in the History of Biochemistry: Personal Biogr Recollections, 40: 205–252

  • Krasnovsky AA and Voynovskaya KK (1951) The reversed photochemical oxidation/reduction of chlorophyll and bacteriochlorophyll. Dokl Acad Nauk USSR 85: 389–392

    Google Scholar 

  • Krasnovsky Jr AA (1979) Photoluminescence of singlet oxygen in pigment solutions, Photochem Photobiol 29: 29–36

    CAS  Google Scholar 

  • Krasnovsky Jr AA (2003) Chlorophyll isolation, structure and function: major landmarks of the early history of research in the Russian Empire and the Soviet Union. Photosynth Res 76: 389–402 (this issue)

    Article  CAS  Google Scholar 

  • Krasnovsky Jr AA, Lebedev NN and Litvin FF (1975) Detection of triplet states of Chl and its precursors in leaves and chloroplasts by phosphorescence and delayed fluorescence. Proc Acad Sci USSR 225: 177–180

    Google Scholar 

  • Kukushkin AK, Tikhonov AN, Blumenfeld LA and Ruuge EK (1973) The theoretical study of the primary events in higher plants and alga. Proc USSR Acad Sci 211: 718–724

    CAS  Google Scholar 

  • Liberman EA, Topali VP, Tsofina LM, Jasaitis AA and Skulachev VP (1969) Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature 222: 1076–1078

    Article  PubMed  CAS  Google Scholar 

  • Litvin FF and Sineshchekov VA (1975) Molecular organization of Chl and energetics of the initial stages in photosynthesis In: Govindjee (ed) Bioenergetics of Photosynthesis, pp 619–661. Academic Press New York

    Google Scholar 

  • Myers J (1984) The 1932 experiments. Photosynth Res 40: 303–310

    Article  Google Scholar 

  • Myers J (2002) In one era and out the other. Photosynth Res 73: 21–28

    Article  PubMed  CAS  Google Scholar 

  • Parson WW (1968) The role of P870 in bacterial photosynthesis. Biochim Biophys Acta 153: 248–259

    Article  PubMed  CAS  Google Scholar 

  • Parson WW (2003) Electron donors and acceptors in the initial steps of photosynthesis in purple bacteria: a personal account. Photosynth Res 76: 81–92 (this issue)

    Article  PubMed  CAS  Google Scholar 

  • Paschenko VZ, Kononenko AA, Protasov SP, Rubin LR, Rubin AB and Uspenskaya NY (1977) Probing the fluorescence emission of the photosynthesis apparatus of Rps. sphaeroides strain 1706–1 on the pulse fluorometer. Biochim Biophys Acta 461: 403–414

    Article  PubMed  CAS  Google Scholar 

  • Paschenko VZ, Gorokhov VV, Grishanova NP, Goryacheva EA, Korvatovsky BN, Knox PP, Zakharova NI and Rubin AB (1988) The influence of structure and dynamic organization of the reaction center from purple bacterium Rb. sphaeroides on picosecond stages of photoinduced reactions. Biochim Biophys Acta 1364: 361–372

    Google Scholar 

  • Rabinowich E (1961) Robert Emerson. Proc Natl Acad Sci USA (Biographical Memoirs) XXXV: 112–131

    Google Scholar 

  • Razjivin AP, Danielius RV, Gadonas RA, Borisov AY and Piskarskas AS (1982) The study of excitation transfer between light-harvesting antenna and RC in chromatophores from purple bacterium Rs. Rubrum by selective picosecond spectroscopy. FEBS Lett 143: 40–44

    Article  CAS  Google Scholar 

  • Reed DW and Clayton RK (1968) Isolation of a reaction center fraction from Rps sphaeroides. Biochem Biophys Res Commun 30: 471–475

    Article  PubMed  CAS  Google Scholar 

  • Robinson GW (1967) Excitation transfer and trapping in photosynthesis. Brookhaven Symp Biol 19: 16–38

    Google Scholar 

  • Rubin AB, Kononenko AA, Venediktov PS, Borisevitch GP, Knox PP and Lukashev EP (1980) Polarization effect in photosynthetic membranes. Int J Quant Chem 17: 587–593

    Article  CAS  Google Scholar 

  • Rubin AB, Venediktov PS, Krendeleva TE and Paschenko VZ (1986) Influence of the physiology state of plants on the primary events in photosynthesis. Photobiochem Photobiophys 12: 185–189

    CAS  Google Scholar 

  • Rubin AB, Kononenko AA, Shaitan KV, Paschenko VZ and Riznichenko GY (1994) Electron transport in photosynthesis. Biophysika 39: 213–235

    CAS  Google Scholar 

  • Shaitan KV, Uporov IV, Lukashev EP, Kononenko AA and Rubin AB (1991) Photoconformational transition caused by temperature and light affect the charge recombination in the reaction center of photosynthetic bacteria. Mol Biol 25: 560–569 [in Russian]

    Google Scholar 

  • Suvalov VA and Klimov VV (1976) The primary photoreaction in the complex of Cyt(P890/P760) in Chromatium minutissimum at low redox potentials. Biochim Biophys Acta 440: 587–599

    Article  Google Scholar 

  • Shuvalov VA, Klevanik AV, Sharkov AV, Matveetz YaA and Krukov PG (1978) Picosecond detection of BChl-800 as an intermediate electron carrier in Rs. rubrum reaction centers. FEBS Lett 91: 135–139

    Article  PubMed  CAS  Google Scholar 

  • Skulachev VP (1979) Transduction of light to electric energy in bacterial photosynthesis, In: Barber J (ed) Photosynthesis in Relation to Model Systems, pp 175–188. Elsevier, Amsterdam/New York

    Google Scholar 

  • Sybesma C and Vredenberg WJ (1963) Evidence for a reaction center P840 in the green bacterium Chloropseudomonas ethilicum. Biochim Biophys Acta 75: 439–441

    Article  PubMed  CAS  Google Scholar 

  • Terenin AN (1943) New type of excited state in aromatic molecules. Acta Phys Chem URSS 18: 210–216

    CAS  Google Scholar 

  • Tumerman LA and Rubin AB (1962) The temperature dependence of the efficiency of primary conversion of light energy at photosynthesis. Dokl Acad USSR 145: 202–205

    CAS  Google Scholar 

  • Tumerman LA and Sorokin EM (1967) Photosynthetic unit of plants: physical or statistical type? Mol Biol 1: 628–635 [in Russian]

    Google Scholar 

  • Tumerman LA, Borisova OF and Rubin AB (1961) The relation between photosynthetic activity and chlorophyll fluorescence. Biophysika 6: 645–649 [in Russian]

    CAS  Google Scholar 

  • van Niel CB (1941) The bacterial photosyntheses and their importance for the general problems of photosynthesis. Adv Enzymol 1: 263–328

    CAS  Google Scholar 

  • Vredenberg WJ and Duysens LNM (1963) Transfer of energy from BChl to reaction center during bacterial photosynthesis. Nature 197: 355–357

    Article  PubMed  CAS  Google Scholar 

  • Witt HT (1975) Primary acts of energy conservation in the functional membrane of photosynthesis. In: Govindjee (ed) Bioenergetics of Photosynthesis, pp 493–554. Academic Press, New York

    Google Scholar 

  • Witt HT, Müller A and Rumberg H (1961) Experimental evidence for the mechanism of photosynthesis. Nature 191: 194–195

    Article  PubMed  CAS  Google Scholar 

  • Zankel KL, Reed DW and Clayton RK (1968) Fluorescence and photosynthetic reaction centers. Proc Natl Acad Sci USA 61: 1243–1246

    Article  PubMed  CAS  Google Scholar 

  • Zuber H (1985) Structure and function of light-harvesting complexes and their polypeptides. Photochem Photobiol 42: 821–844

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borisov, A. The beginnings of research on biophysics of photosynthesis and initial contributions made by Russian scientists to its development. Photosynthesis Research 76, 413–426 (2003). https://doi.org/10.1023/A:1024962531792

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024962531792

Navigation