Skip to main content
Log in

Synergy Between 3′Azido-3′deoxythymidine and Paclitaxel in Human Pharynx FaDu Cells

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. We recently demonstrated simultaneous targeting of telomere and telomerase as a novel cancer therapeutic approach, and that telomerase inhibitors such as 3′azido-3′deoxythymidine (AZT) significantly enhanced the antitumor activity of paclitaxel, which causes telomere erosion, in telomerase-positive human pharynx FaDu tumors in vitro and in vivo (1). The present study evaluated the synergy between AZT and paclitaxel to identify optimal combinations for future clinical evaluation.

Methods. FaDu cells were incubated with or without AZT for 24 h and then treated with AZT with or without paclitaxel for an additional 48 h. Under these conditions, single agent paclitaxel produced a 60% maximum reduction of cell number (IC50 was 7.3 nM), and single agent AZT produced a 97% reduction (IC50 was 5.6 μM). Synergy was evaluated using fixed-concentration and fixed-ratio methods, and data were analyzed by the combination index method.

Results. The results indicate a concentration-dependent synergy between the two drugs; the synergy was higher for combinations containing greater paclitaxel-to-AZT concentration ratios and increased with the level of drug effect. For example, in combinations containing 1 μM AZT, synergy was 1.3-fold at the 20% effect level and 3.1-fold at the 60% effect level. Because the major antitumor activity, determined by comparing the posttreatment cell number to the pretreatment cell number, was antiproliferation at the 20% effect level and cell kill at the 60% effect level, our results suggest that AZT mainly enhances the cell kill effect of paclitaxel.

Conclusion. In summary, the present study demonstrates a synergistic interaction between paclitaxel and AZT and supports a combination using a low and nontoxic AZT dose in combination with a therapeutically active dose of paclitaxel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Y. Mo, Y. Gan, S. Song, J. Johnston, X. Xiao, M. G. Wientjes, and J. L.-S. Au. Simultaneous targetting of telomeres and telomerase as a cancer therapeutic approach. Cancer Res. 63:579–585 (2003).

    Google Scholar 

  2. V. A. Zakian. Telomeres: beginning to understand the end. Science 270:1601–1607 (1995).

    Google Scholar 

  3. W. Fu, J. G. Begley, M. W. Killen, and M. P. Mattson. Anti-apoptotic role of telomerase in pheochromocytoma cells. J. Biol. Chem. 274:7264–7271 (1999).

    Google Scholar 

  4. V. Urquidi, D. Tarin, and S. Goodison. Role of telomerase in cell senescence and oncogenesis. Annu. Rev. Med. 51:65–79 (2000).

    Google Scholar 

  5. C. I. Nugent, G. Bosco, L. O. Ross, S. K. Evans, A. P. Salinger, J. K. Moore, J. E. Haber, and V. Lundblad. Telomere maintenance is dependent on activities required for end repair of double-strand breaks. Curr. Biol. 8:657–660 (1998).

    Google Scholar 

  6. T. Ishikawa, M. Kamiyama, H. Hisatomi, Y. Ichikawa, N. Momiyama, Y. Hamaguchi, S. Hasegawa, T. Narita, and H. Shimada. Telomerase enzyme activity and RNA expression in adriamycin-resistant human breast carcinoma MCF-7 cells. Cancer Lett. 141:187–194 (1999).

    Google Scholar 

  7. N. W. Kim, M. A. Piatyszek, K. R. Prowse, C. B. Harley, M. D. West, P. L. Ho, G. M. Coviello, W. E. Wright, S. L. Weinrich, and J. W. Shay. Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–2015 (1994).

    Google Scholar 

  8. J. Feng, W. D. Funk, S. S. Wang, S. L. Weinrich, A. A. Avilion, C. P. Chiu, R. R. Adams, E. Chang, R. C. Allsopp, and J. Yu. The RNA component of human telomerase. Science 269:1236–1241 (1995).

    Google Scholar 

  9. T. M. Bryan, A. Englezou, L. Dalla-Pozza, M. A. Dunham, and R. R. Reddel. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nature Med. 3:1271–1274 (1997).

    Google Scholar 

  10. C. Strahl and E. H. Blackburn. Effects of reverse transcriptase inhibitors on telomere length and telomerase activity in two immortalized human cell lines. Mol. Cell. Biol. 16:53–65 (1996).

    Google Scholar 

  11. P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J. T. Warren, H. Bokesch, S. Kenney, and M. R. Boyd. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 82:1107–1112 (1990).

    Google Scholar 

  12. M. C. Berenbaum. What is synergy? Pharmacol. Rev. 41:93–141 (1989).

    Google Scholar 

  13. T. C. Chou and P. Talalay. Quantitative analysis of dose–effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul. 22:27–55 (1984).

    Google Scholar 

  14. W. C. Hahn, S. A. Stewart, M. W. Brooks, S. G. York, E. Eaton, A. Kurachi, R. L. Beijersbergen, J. H. Knoll, M. Meyerson, and R. A. Weinberg. Inhibition of telomerase limits the growth of human cancer cells. Nature Med. 5:1164–1170 (1999).

    Google Scholar 

  15. Y. Kondo, S. Kondo, Y. Tanaka, T. Haqqi, B. P. Barna, and J. K. Cowell. Inhibition of telomerase increases the susceptibility of human malignant glioblastoma cells to cisplatin-induced apoptosis. Oncogene 16:2243–2248 (1998).

    Google Scholar 

  16. B. Herbert, A. E. Pitts, S. I. Baker, S. E. Hamilton, W. E. Wright, J. W. Shay, and D. R. Corey. Inhibition of human telomerase in immortal human cells leads to progressive telomere shortening and cell death. Proc. Natl. Acad. Sci. USA 96:14276–14281 (1999).

    Google Scholar 

  17. S. E. Holt, V. V. Glinsky, A. B. Ivanova, and G. V. Glinsky. Resistance to apoptosis in human cells conferred by telomerase function and telomere stability. Mol. Carcinogen. 25:241–248 (1999).

    Google Scholar 

  18. X. Zhang, V. Mar, W. Zhou, L. Harrington, and M. O. Robinson. Telomere shortening and apoptosis in telomerase-inhibited human tumor cells. Genes Dev. 13:2388–2399 (1999).

    Google Scholar 

  19. W. Fu, J. G. Begley, M. W. Killen, and M. P. Mattson. Anti-apoptotic role of telomerase in pheochromocytoma cells. J. Biol. Chem. 274:7264–7271 (1999).

    Google Scholar 

  20. S. Kondo, Y. Tanaka, Y. Kondo, M. Hitomi, G. H. Barnett, Y. Ishizaka, J. Liu, T. Haqqi, A. Nishiyama, B. Villeponteau, J. K. Cowell, and B. P. Barna. Antisense telomerase treatment: induction of two distinct pathways, apoptosis and differentiation. FASEB J. 12:801–811 (1998).

    Google Scholar 

  21. J. G. Ren, H. L. Xia, T. Just, and Y. R. Dai. Hydroxyl radical-induced apoptosis in human tumor cells is associated with telomere shortening but not telomerase inhibition and caspase activation. FEBS Lett. 488:123–132 (2001).-

    Google Scholar 

  22. C. Strahl and E. H. Blackburn. Effects of reverse transcriptase inhibitors on telomere length and telomerase activity in two immortalized human cell lines. Mol. Cell. Biol. 16:53–65 (1996).

    Google Scholar 

  23. S. M. Melana, J. F. Holland, and B. G. Pogo. Inhibition of cell growth and telomerase activity of breast cancer cells in vitro by 3′-azido-3′-deoxythymidine. Clin. Cancer Res. 4:693–696 (1998).

    Google Scholar 

  24. A. Mazumder, D. Cooney, R. Agbaria, M. Gupta, and Y. Pommier. Inhibition of human immunodeficiency virus type 1 integrase by 3′-azido-3′-deoxythymidylate. Proc. Natl. Acad. Sci. USA 91:5771–5775 (1994).

    Google Scholar 

  25. W. Lewis and M. C. Dalakas. Mitochondrial toxicity of antiviral drugs. Nature Med. 1:417–422 (1995).

    Google Scholar 

  26. B. Jacobsson, S. Britton, Q. He, A. Karlsson, and S. Eriksson. Decreased thymidine kinase levels in peripheral blood cells from HIV-seropositive individuals: implications for zidovudine metabolism. AIDS Res. Hum. Retroviruses 11:805–811 (1995).

    Google Scholar 

  27. O. A. Olivero and M. C. Poirier. Preferential incorporation of 3′-azido-2′,3′-dideoxythymidine into telomeric DNA and Z-DNA-containing regions of Chinese hamster ovary cells. Mol. Carcinogen. 8:81–88 (1993).

    Google Scholar 

  28. B. Chandrasekaran, T. E. Kute, and D. S. Duch. Synchronization of cells in the S phase of the cell cycle by 3′-azido-3′-deoxythymidine: implications for cell cytotoxicity. Cancer Chemother. Pharmacol. 35:489–495 (1995).

    Google Scholar 

  29. M. D. Mediavilla and E. J. Sanchez-Barcelo. Doses and time-dependent effects of 3′-azido-3′-deoxythymidine on T47D human breast cancer cells in vitro. Pharmacol. Toxicol. 87:138–143 (2000).

    Google Scholar 

  30. M. Roskrow and S. N. Wickramasinghe. Acute effects of 3′-azido-3′-deoxythymidine on the cell cycle of HL60 cells. Clin. Lab. Haematol. 12:177–184 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessie L.-S. Au.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnston, J.S., Johnson, A., Gan, Y. et al. Synergy Between 3′Azido-3′deoxythymidine and Paclitaxel in Human Pharynx FaDu Cells. Pharm Res 20, 957–961 (2003). https://doi.org/10.1023/A:1024431218327

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024431218327

Navigation