Skip to main content
Log in

Determination of Conjugation Efficiency of Antibodies and Proteins to the Superparamagnetic Iron Oxide Nanoparticles by Capillary Electrophoresis with Laser-Induced Fluorescence Detection

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The method based on capillary electrophoresis with laser-induced fluorescence detection (CE/LIF) was developed for determination of magnetic iron oxide nanoparticles (hydrodynamic diameters of 100 nm) functionalized with molecules containing primary amino groups. The magnetic nanoparticles with carboxylic or aminopropyl-trimethoxysilane groups at their surface were conjugated to the model proteins (bovine serum albumin, BSA; streptavidin or goat anti-rabbit immunoglobulin G, IgG) using carbodiimide as a zero-length cross-linker.

The nanoparticle–protein conjugates (hydrodynamic diameter 163–194 nm) were derivatized with naphthalene-2,3-dicarboxaldehyde reagent and separated by CE/LIF with a helium–cadmium laser (excitation at 442 nm, emission at 488 nm). The separations were carried out by using a fused-silica capillary (effective length 48 cm, inner diameter 75 um) and 100 mM sodium borate buffer (pH 9.2), the potential was 30 kV. The detection limit for BSA-conjugate was 1.3 pg/10 nl, i.e. about 20 amol. The present method provides an efficient and fast tool for sensitive determination of the efficacy of biomolecular functionalization of magnetic nanoparticles. The CE/LIF technique requires only negligible sample volumes for analysis, which is especially suitable for controlling the process of preparation of functionalized nanoparticles with unique properties aimed to be used for diagnostic or therapeutic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong D.W. & L. He, 2001. Determination of cell viability insingle or mixed samples using capillary electrophoresis laser-induced fluorescence microfluidic systems. Anal. Chem. 73, 4551–4557.

    Google Scholar 

  • Armstrong D.W., J.M. Schneiderheinze, J.P. Kullman & L. He, 2001. Rapid CE microbial assays for consumer products that contain active bacteria. FEMS Microbiol. Lett. 194, 33–37.

    Google Scholar 

  • Arnedo A., M.A. Campanero, S. Espuelas, M.J. Renedo & J.M. Irache, 2000. Determination of oligonucleotide ISIS 2922 in nanoparticulate delivery systems by capillary zone electrophoresis. J. Chromatogr. A 871, 311–320.

    Google Scholar 

  • Baker D., 1995. Capillary Electrophoresis. Wiley, New York.

    Google Scholar 

  • Beale S.C., 1998. Capillary electrophoresis. Anal. Chem. 70, 279R–300R.

    Google Scholar 

  • Bert L., F. Robert, L. Denoroy & B. Renaud, 1996. High-speed separation of subnanomolar concentrations of noradrenaline and dopamine using capillary zone electrophoresis with laser-induced fluorescence detection. Electrophoresis 17, 523–525.

    Google Scholar 

  • Bert L.,F. Robert, L. Denoroy, L. Stoppini & B. Renaud, 1996. Enhanced temporal resolution for the microdialysis monitoring of catecholamines and excitatory amino acids using capillary electrophoresis with laser-induced fluorescence detection. Analytical developments and in vitro validations. Chromatography A 755, 99–111.

    Google Scholar 

  • Bogdanov A. & R. Weissleder, 1998. Thedevelopment of in vivo imaging systems to study gene expression. Trends Biotechnol. 16, 5–10.

    Google Scholar 

  • Camilleri P., 1993. Capillary Electrophoresis, Theory and Practice, CRCPress, Boca Raton, FL.

    Google Scholar 

  • Couderc F., E. Causse & C. Bayle, 1998. Drug analysis bycapillary electrophoresis and laser-induced fluorescence. Electrophoresis 19, 2777–2790.

    Google Scholar 

  • Freed A.L. & S.M. Lunte, 2000. Separation of naphthalene-2,3-dicarboxaldehyde-derivatized-substance P and its metabolites by micellar electrokinetic chromatography. Electrophoresis 21, 1992–1996.

    Google Scholar 

  • Kim D.K., W. Voit, W. Zapka, B. Bjelke, M. Muhammed & K.V. Rao, 2001a. Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J. Magn. Magn. Mater. 225, 30–36.

    Google Scholar 

  • Kim D.K., Y. Zhang, W. Voit, K.V. Rao & M. Muhammed, 2001b. Biomedicalapplication of ferrofluids containing magnetic nanoparticles. Mat. Res. Soc. Symp. Proc. 676, Y8.32.1–Y8.32.6.

    Google Scholar 

  • Krivánková L., P. Pantucková & P. Bocek,2000. Capillary zone electrophoresis and micellar electrokinetic chromatography of solution of polyaniline particles. Electrophoresis 21, 627–632.

    Google Scholar 

  • Lubbe A.S., C. Bergemann, W. Huhnt, T. Fricke, H. Riess, J.W. Brock & D. Huhn, 1996. Preclinical experiences with magnetic drug targeting: Tolerance and efficacy. Cancer Res. 56, 4694–4701.

    Google Scholar 

  • Moore A., J.P. Basilion, E.A. Chiocca & R. Weissleder, 1998. Measuring transferrinreceptor gene expression by NMR imaging. Biochim. Biophys. Acta. 1402, 239–249.

    Google Scholar 

  • Morimoto Y., K. Sugibayashi, M. Okumura & Y. Kato, 1980. Biomedical applicationsof magnetic fluids. i. Magnetic guidance of ferro-colloid-entrapped albumin microsphere for site specific drug delivery in vivo. J. Pharmacobio-Dynam. 3, 264–267.

    Google Scholar 

  • Morneau A., V. Pillai, S. Nigam, F.M. Winnik & R.F. Ziolo, 1999. Analysis of ferrofluids by capillary electrophoresis. Physicochem. Eng. Aspects 154, 295–301.

    Google Scholar 

  • Oates M.D. & J.W. Jorgenson, 1989. Determination of naphthalene-2,3-dicarboxaldehyde-labeled amino acids by open tubular liquid chromatography with electrochemical detection. Anal. Chem. 61, 432–435.

    Google Scholar 

  • Remsen L.G., C.I. McCormick, S. Roman-Goldstein, G. Nilaver, R. Weissleder, A. Bogdanov, I. Hellstrom, R.A. Kroll & E.A. Neuwelt, 1996. MR of carcinoma-specific monoclonal antibody conjugated to monocrystalline iron oxide nanoparticles: the potential for noninvasive diagnosis. AJNR: Am. J. Neuroradiol. 17, 411–418.

    Google Scholar 

  • Righetti P.G., 2001.Capillary electrophoretic analysis of proteins and peptides of biomedical and pharmacological interest. Biopharm. Drug Dispos. 22, 337–351.

    Google Scholar 

  • Schaffer B.K., C. Linker, M. Papisov, E. Tsai, N. Nossiff, T. Shibata, A. Bogdanov Jr., T.J. Brady & R. Weissleder, 1993. MION-ASF: Biokinetics of an MR receptor agent. Mag. Res. Imag. 11, 411–417.

    Google Scholar 

  • Shen T.T., A. Bogdanov Jr., A. Bogdanova, K. Poss, T.J. Brady & R. Weissleder,1996. Magnetically labeled secretin retains receptor affinity to pancreas acinar cells. Bioconjugate Chem. 7, 311–316.

    Google Scholar 

  • Stookey L.L., 1970. Ferrozine¶ anewspectrophotometric reagent for iron. Anal. Chem. 47, 779–781.

    Google Scholar 

  • Ugelstad J.,P. Stenstad, L. Kilaas, W.S. Prestvik, R. Herje, A. Berge & E. Hornes, 1993. Monodisperse magnetic polymer particles. New biochemical and biomedical applications. Review. Blood Purification 11, 349–369.

    Google Scholar 

  • Uhlén M., 1989. Magnetic separation ofDNA. Nature 340, 733–744.

    Google Scholar 

  • Uhlén M., E. Hornes & O. Olsvik eds.,1994. Advances in Biomagnetic Separation. Eaton Publ. Co., Natick.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kehr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, FH., Yoshitake, T., Kim, DK. et al. Determination of Conjugation Efficiency of Antibodies and Proteins to the Superparamagnetic Iron Oxide Nanoparticles by Capillary Electrophoresis with Laser-Induced Fluorescence Detection. Journal of Nanoparticle Research 5, 137–146 (2003). https://doi.org/10.1023/A:1024428417660

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024428417660

Navigation