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Abstract 

The aim of the study was to compare the antioxidant systems in juvenile marine fish of 

commercial importance in European aquaculture, namely turbot (Scophthalmus maximus), 

halibut (Hippoglossus hippoglossus) and gilthead sea bream (Sparus aurata). The present 

dietary trial was specifically designed to investigate the antioxidant effects of vitamin E 

under moderate oxidising conditions, including high dietary levels of highly unsaturated fatty 

acids and the feeding of oxidised oils.  The objective  was to induce a stressful pro-oxidant 

status to enable characterisation of the biochemical responses to peroxidative stress without 

causing unnecessary suffering to the experimental animals or high mortalities during the 

trials.  Both sea bream and turbot showed excellent growth, whereas growth was poorer in 

halibut. Dietary oxidised oil significantly reduced growth in turbot and especially in halibut, 

but not in sea bream. Vitamin E improved growth in sea bream fed oxidised oil but not in 

turbot or halibut. However, vitamin E supplementation appeared to improve survival in all 

three species. In sea bream and turbot, liver antioxidant defence enzyme activities were 

generally increased by feeding peroxidised oil and reduced by vitamin E.  Conversely, in 

halibut, the liver antioxidant defence enzyme activities were not increased by feeding 

peroxidised oil and only superoxide dismutase was reduced by feeding vitamin E. Consistent 

with these data, feeding oxidised oil increased lipid peroxidation products in halibut, but 

generally not in sea bream or turbot. Furthermore, lipid peroxidation products were generally 

reduced by dietary vitamin E in both sea bream and turbot, but not in halibut.   Therefore, 

halibut liver antioxidant defence enzymes did not respond to dietary oxidised oil or vitamin E 

as occurred in turbot and, especially sea bream. This resulted in increased levels of lipid 

peroxides in halibut compared to turbot and sea bream in fish given dietary oxidised oil. In 

addition, supplemental vitamin E did not reduce lipid peroxides in halibut as it did in turbot 

and sea bream. The increased peroxidation stress in halibut may account for their poorer 

growth and survival in comparison to turbot and especially sea bream. Halibut were reared at 

a lower temperature, although relatively high for halibut, than either turbot or sea bream but 

they were also slightly younger/smaller fish and possibly, therefore, more developmentally 

immature, and either or all of these factors may be important in the lack of response of the 

liver enzymes in halibut.  
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INTRODUCTION  

 

Lipid and polyunsaturated fatty acid (PUFA) peroxidation is highly deleterious, resulting in 

damage to biomembranes and it is implicated in several pathological conditions in fish 

(Kawatsu, 1969; Watanabe et al., 1970; Murai and Andrews, 1974; Sakai et al., 1989).  

Physiological antioxidant protection involves both endogenous components such as free radical 

scavenging enzymes, including superoxide dismutase (SOD), catalase, and glutathione 

peroxidase (GPX) (Winston and Di Giulio, 1991; Halliwell and Gutteridge, 1996), and 

exogenous dietary micronutrients such as vitamin E.   Tissue lipid and polyunsaturated fatty 

acid (PUFA) contents and compositions are critical factors in lipid peroxidation.  As fish 

tissues and fish diets contain large quantities of n-3 highly unsaturated fatty acids (HUFA) 

they are potentially more at risk from peroxidative attack than those of mammals  (Sargent et 

al., 1999). However, information in relation to in vivo lipid peroxidation and antioxidant 

defences either in wild or cultured marine fish species is quite limited (De Silva and 

Anderson, 1995; Stéphan et al., 1995; Murata et al., 1996; Peters and Livingstone, 1996; 

Mourente et al., 1999a,b).  The principal objectives of this project were 1) To demonstrate 

the significance of oxidative stress, and the role of the antioxidant systems under controlled 

experimental conditions, in weaned juvenile marine fish of commercial importance in 

European aquaculture, namely turbot (Scophthalmus maximus), halibut (Scophthalmus 

maximus) and gilthead sea bream (Sparus aurata) and 2) to characterise and understand the 

antioxidant systems in marine fish during early development in order to enhance the growth 

and quality of early life stages by avoiding oxidation problems that may cause pathologies 

and disease. 

 Our previous work suggested that feeding high HUFA diets resulted in signs of 

increased peroxidative stress in juvenile marine fish, as evidenced by increased levels of 

tissue lipid peroxidation products, but only moderate effects on liver antioxidant defence 

enzyme activities were observed (Tocher et al., 2001). Therefore, in the present trial, the 

level of dietary HUFA was increased by using higher levels of oil in the diet (19%) and, 

especially, by using an oil with a much higher n-3HUFA content (a high quality 

anchovy/sardine oil concentrate). In order to increase the potential peroxidative stress to an 

even higher level,  oxidised oil was also used with peroxidation induced by controlled heating 

(50 oC) in an oxygen-rich atmosphere, with the extent of peroxidation monitored regularly by 

sampling and determination of peroxide value (P.V.). Therefore, the dietary trial had a 

factorial two design (oxidised (X) v. unoxidised oil and ± vitamin E) giving four diets, HO, 
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HE, HXO and HXE. The effects of dietary oxidised oil with or without supplementary dietary 

vitamin E on survival and growth parameters of the fish were determined.  Dietary effects on 

tissue lipid and fatty acid contents and compositions were determined, and the effects of the 

dietary oxidised oil and vitamin E on the activities of the liver antioxidant defence enzymes 

were  characterised. Finally, the levels of liver and whole body lipid peroxidation products, 

including malondialdehyde, determined as thiobarbituric acid reactive substances (TBARS), 

and isoprostanes, were measured. 

 

MATERIALS AND METHODS 

 

Experimental diets 
 
The experimental diets were based on a modified commercial extruded formulation utilising 

fishmeal as protein source (Table 1).   Mineral and vitamin premixes, vitamin E-stripped 

anchovy/sardine oil concentrate (both oxidised and unoxidised) and vitamin E (tocopheryl 

acetate) were prepared and supplied by the Lipid Nutrition Group, Institute of Aquaculture, 

University of Stirling.   The diets were manufactured by a commercial feed producer (Ewos 

Ltd., Livingston, Scotland). Vitamin E was removed from the oil by charcoal absorption and 

half of the oil was oxidised by heating at 50 oC with vigorous aeration for 24 h, with the 

degree of oxidation monitored by determination of the peroxide value at 8 h intervals.  Four 

diets were produced at two pellet sizes (500 and 1500 µm).   The PUFA contents, vitamin E 

levels, PUFA/vitamin E ratios, unsaturation index, peroxide values and TBARS contents of 

the diets are shown in Table 2, and the fatty acid compositions are shown in Table 3. 

 

Experimental fish and dietary trial conditions 
 

The turbot experiment was performed in the facilities of the Laboratory of Aquaculture & 

Artemia Reference Center (Ghent University, Belgium).   Juvenile turbot were obtained from 

a commercial hatchery (France Turbot, Noirmoutier, France) and were maintained in a 1000 l 

tank for acclimatization to laboratory conditions during which time they were fed a standard 

ICES weaning diet (INVE Aquaculture N.V., Belgium).  The dietary trial was conducted in 3 

separate recirculating water units with each unit consisting of four 30-liter rectangular tanks 

with separate biofilter.  The 75 day-old fish were stocked in the experimental system at an 

initial weight of 0.95 ± 0.22 g,  at a density of 120 individuals per tank.   Each diet was fed to 
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triplicate groups of fish  (one tank in each unit) with the feed supplied by automatic feeders 

for 600 degree.days at a water temperature of 19 ± 1oC. Water quality parameters in each unit 

were monitored daily (temperature, NH3, NO2
-, salinity; ammonia never exceeded 0.3 ppm). 

Excess feed was siphoned off and any dead fish were  removed. The light regime was 12 h 

light:12h dark with feeding during the light period only.  

     The halibut experiment was performed in the facilities of the Norwegian University of 

Science and Technology (NTNU) in Trondheim. Normally pigmented halibut fry were obtained 

from a commercial fish farm (Norwegian Halibut AS, Rørvik, Norway). At NTNU, 67-day old 

halibut fry of initial weight 0.31 ± 0.11g were divided randomly into groups of 100 –120  

individuals  in polyethylene tanks (1x1 m, 40 cm depth) with a water flow of 6.3 - 7.5 l min-1. 

The dietary trial was performed at a temperature of 14 ± 1°C for a period of 600 degree.days. 

All groups of fish were fed continuously to satiation throughout the experimental period with 

the ration adjusted weekly as fish grew.  The tanks were rinsed every day and there were 

always food particles in excess at the bottom of each unit.  

       The sea bream experiment was performed in the facilities of the University of Cadiz, 

Cadiz, Spain.  Sea bream from the same batch, completely weaned, with a functional 

swimbladder, were obtained from CUPIMAR S. A. (Cadiz, Andalucia, Spain). After 

acclimatization to the experimental diet and conditions for two weeks, the 80 days post-hatch 

fish with a live mass of 1.52 ± 0.21 g were stocked randomly at an initial density of 5 fish/l 

into rectangular tanks of 100 l each.  Each diet was fed to triplicate groups of fish.  The ration 

varied from 4% to 3% of the biomass/day between the beginning and end of the experiment 

and was offered to fish 6 times during the daylight hours (natural photoperiod) by hand.  The 

length of the experiment was established at 600 degree.days.  The tanks were in an open 

system continuously supplied with running borehole water of 39 ppt salinity at a temperature 

of 19.4 ± 0.2oC. The water was treated with biological filters to eliminate ammonia, by 

nitrification processes, to sea water quality criteria (1 µg/l NH3-N maximum). Oxygen was 

supplied by aeration with the minimum level observed during trials being 5.6 mg/l or 77.8% 

saturation.  Water renewal was set at 10 times total volume per day (0.7 l.min-1).  

 

Sampling 

 

In all trials, survival was determined by counting the number of fish remaining at the end of 

the experiment and was expressed as a percentage of the initial number.  Fish were sampled 
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and dissected on ice after a 24 h starvation period to avoid interference of gut contents in the 

analysis. For morphometric measurements, a minimum of 25 specimens were used from each 

treatment. The head-tail length and live mass were determined for whole fish, while dry mass 

was determined for both whole fish and liver. Live masses were determined by blotting fish 

and liver on filter paper before weighing, and dry masses were determined after heating in an 

oven at 60 oC for 24 h. After removal, the liver was carefully cleaned of adhering tissue 

before weighing and the hepato-somatic index (HSI) calculated (HSI = 100* [liver 

weight/body weight] ).  Growth was assessed by determining the specific growth rate (SGR) 

as % weight gain per day (100* [ln (final weight) – ln (initial weight)]/days) (Wootten, 

1990). Samples of diets, whole fish and dissected livers for lipid and fatty acid analysis, 

vitamin E content, lipid peroxidation products (TBARS and isoprostane) and hepatic 

antioxidant defence enzyme activities were immediately frozen in liquid nitrogen and stored 

under nitrogen at –80 oC prior to analysis.  All liver samples were triplicates of pooled livers, 

the number of livers dependent upon the size of the fish and weight of individual livers, 

varying between three and six livers per sample. 

  

Lipid extraction and lipid class composition 

 

Total lipid content was determined gravimetrically after extraction by homogenisation in 

chloroform/methanol (2:1, v/v) containing 0.01 % butylated hydroxytoluene (BHT) as 

antioxidant, basically according to Folch et al., (1957). Separation of lipid classes was 

performed by high-performance thin-layer chromatography (HPTLC).  Approximately 10 µg 

of lipid extract was loaded as a 2 mm streak and the plate developed to two-thirds distance 

with methyl acetate/isopropanol/chloroform/methanol/0.25 % aqueous KCl (25:25:25:10:9, 

by vol.).  After desiccation, the plate was fully developed with hexane/diethyl ether/acetic 

acid (85:15:1, by vol.).  The classes were quantified by charring at 160 oC for 15 min after 

spraying with 3 % (w/v) aqueous cupric acetate containing 8 % (v/v) phosphoric acid, 

followed by calibrated densitometry using a Shimadzu CS-9000 dual-wavelength flying spot 

scanner and DR-13 recorder (Henderson and Tocher, 1992). 

 

Total lipid fatty acid analyses 

 

Fatty acid methyl esters (FAME) from total lipids were prepared by acid-catalysed 

transmethylation for 16 h at 50 oC, using heptadecanoic acid (17:0) as internal standard 
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(Christie, 1989). FAME were extracted and purified as described previously (Tocher and 

Harvie, 1988) and were separated in a Fisons GC8000 gas chromatograph equipped with a 

chemically bonded CP Wax 52CB fused silica wall coated capillary column (30 m x 0.32 mm 

i. d., Chrompack U.K. Ltd., London), on-column injection system and flame ionisation 

detection. Hydrogen was used as the carrier gas with an oven thermal gradient from an initial 

50 ºC to 150 oC at 40 ºC/min and then to a final temperature of 230 oC at 2 ºC/min. Individual 

FAME were identified by comparison with known standards, a well-characterised fish oil and 

by reference to published data as described previously (Tocher and Harvie, 1988) and 

quantified using a PC with Chromcard for Windows software (Thermo-Quest Italia S.P.A., 

Milan, Italy). 

 

Measurements of thiobarbituric acid reactive substances (TBARS) 

 

The measurement of TBARS was carried out using a method adapted from that of Burk et al., 

(1980). Between 20-30 mg of tissue per sample was homogenised in 1.5 ml of 20 % (w/v) 

trichloroacetic acid containing 0.05 ml of 1% BHT in ethanol. To this was added 2.95 ml of 

freshly prepared 50 mM thiobarbituric acid solution. The reagents were mixed in a stoppered 

test tube and heated at 100 ºC for 10 min. After cooling the tubes and removing protein 

precipitates by centrifugation at 12000 x g, the supernatant was read in a spectrophotometer 

at 532 nm. The absorbance was recorded against a blank at the same wavelength. The 

concentration of TBARS, expressed as mmol TBARS.mg-1 of tissue protein, was calculated 

using the extinction coefficient 0.156 µM-1.cm-1. 

 

Determination of 8-isoprostane levels 

 

The levels of 8-isoprostane, a novel lipid peroxidation product formed non-enzymatically, 

and thus a potentially good indicator of lipid peroxidation in tissues, were determined by 

enzyme immunoassay (EIA). Isoprostanes were determined in the same homogenates of liver 

and whole fish that were prepared for TBARS analyses.  Samples should be assayed 

immediately after collection or, as in this case, stored at –80 oC, as they can also appear in 

samples as an artifact of prolonged storage at temperatures above –80 oC.  Most 8-

isoprostanes are found esterified in lipids, and so an extraction and hydrolysis was performed 

in order to determine total amounts of 8-isoprostane. Briefly,  2 ml ethanol was added to 1.5 

ml of homogenate, mixed, and allowed to stand for 5 minutes at 4 oC before precipitated 
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protein was removed by centrifugation. The supernatant was decanted into a clean test tube 

and 3.5 ml 15 % KOH added and incubated for 60 min at 40 oC. The solution was diluted to 

10 ml with ultrapure water and the pH lowered to below 4.0 with 2 ml concentrated formic 

acid. Isoprostanes were purified by applying the solution to a C18 reverse-phase mini-column 

(“Sep-Pak”, Millipore UK, Watford, UK) after activating the column with 5 ml methanol 

followed by 5 ml ultrapure water.   The columns were then washed with 5 ml ultrapure water 

and 5 ml HPLC grade isohexane before eluting isoprostanes with 5 ml ethyl acetate 

containing 1 %  methanol.  The solvent was evaporated under a stream of nitrogen and 1 ml 

EIA kit buffer added. Total isoprostane was quantified using an EIA kit and 8-isoprostane 

standard as per manufacturers instructions (Cayman Chemical Co., Ann Arbor, USA). 

 

Determination of vitamin E contents 

 

Vitamin E (α-tocopherol) was determined by HPLC with fluorescence detection, as described 

in Huo et al., (1996). Samples were homogenized in 2 ml of methanol containing 1mg/ml 

BHT, and tocol added as an internal standard, using a Potter Elvehjem tube. The samples 

were then centrifuged for 2 min at 1500 x g and the supernatant transferred to a 

polypropylene tube. The solid residue was homogenized in 2 ml methanol/BHT and the 

extract combined with the first one, and with 1 ml methanol/BHT used to rinse the Potter 

tube. The combined extracts were centrifuged for 10 min at 12000 x g and an aliquot of 100 

µl was injected. Column and elution details were as in Huo et al., (1996).  Quantitation was 

based on peak height ratios (analyte versus the internal standard tocol). 

 

Determination of enzyme activities in liver homogenates 

 

Samples of liver were homogenised in 9 volumes of 20 mM phosphate buffer pH 7.4, 1 mM 

EDTA and 0.1 % Triton X-100, the homogenates were centrifuged at 600 x g to remove 

debris, and the resultant supernatants used directly for enzyme assays. Catalase activity was 

measured by following the reduction of hydrogen peroxide at 240 nm using the extinction 

coefficient  0.04 mM-1.cm-1 (Beers and Sizer, 1952).  Immediately before assay, 50 ml of 67 

mM potassium phosphate buffer pH 7.0 was mixed with 80 µl of 30% (v/v) hydrogen 

peroxide. The assay cuvette (quartz) contained 3.0 ml of above buffered hydrogen peroxide 

solution plus 25 µl of sample.  

 Total superoxide dismutase (SOD) activity was assayed by measuring the inhibition of 
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the oxygen-dependent oxidation of adrenaline (epinephrine) to adenochrome by xanthine 

oxidase plus xanthine (Panchenko et al., 1975).  Plastic semi-micro-cuvettes containing 0.5 

ml of 100 mM potassium phosphate buffer pH 7.8 / 0.1 mM EDTA, 200 µl adrenaline, 200 µl 

xanthine and 50 µl distilled water (uninhibited control) or 50 µl sample were prepared and the 

reaction initiated by the addition of 10 µl xanthine oxidase (Sigma X4875). The reaction was 

followed at 480 nm and 1 unit of superoxide dismutase activity is described as the amount of 

the enzyme which inhibits the rate of adenochrome production by 50 %. 

 Glutathione peroxidase (GPX) was assayed by following the rate of NADPH oxidation at 

340 nm by the coupled reaction with glutathione reductase (Bell et al., 1985). Plastic semi-

micro-cuvettes containing 0.75 ml of 60 mM potassium phosphate buffer pH 7.4/1 mM 

EDTA/2 mM sodium azide, 50 µl reduced glutathione, 100 µl NADPH and 5 µl glutathione 

reductase (Sigma G4751) were prepared. The basal reaction was initiated by the addition of 

50 µl hydrogen peroxide solution and the non-enzymic rate without sample added was 

measured for later subtraction.  Sample (50 µl) was then added and the assay continued by 

measuring absorbance at 340 nm with specific activity determined using the extinction 

coefficient of 6.22 mM-1 .cm-1. 

 Glutathione-S transferase (GST) activity was determined by following the formation of 

glutathione-chlorodinitrobenzene (CDNB) adduct at 340 nm. Standard plastic cuvettes 

containing 2.5 ml of 120 mM potassium phosphate buffer pH 6.5, 100 µl GSH and 100 µl 

CDNB were prepared and the reaction initiated by the addition of 50 µl sample. Specific 

activities were determined using an extinction coefficient of 9.6 mM-1.cm-1 (Habig et al., 

1974). 

 Glutathione reductase (GR) activity was assayed as described by Racker (1955) by 

measuring the oxidation of NADPH at 340 nm using the extinction coefficient  6.22 mM-

1.cm-1.  Plastic semi-micro-cuvettes containing 0.6 ml of 0.2 M potassium phosphate buffer 

pH 7.0 /2 mM EDTA, 200 µl oxidised glutathione and 100 µl NADPH were prepared and the 

reaction initiated by the addition of 100 µl of sample. 

 Protein content in the homogenate supernatants was determined by the Folin-phenol 

reagent method, according to Lowry et al., (1951) following digestion for 1 h at 60 oC in 1M 

NaOH/0.25% sodium dodecyl sulphate.   

 

Statistical analysis 

 

Results are presented as means ± SD (n = 3 or as otherwise stated). The data were checked 
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for homogeneity of the variances by the Bartlett test and, where necessary, the data were arc-

sin transformed before further statistical analysis. Differences between mean values were 

analysed by one- or two-way analysis of variance (ANOVA) followed, when pertinent, by a 

multiple comparison test (Tukey).  Differences were reported as statistically significant when 

P < 0.05 (Zar, 1984). 

 

RESULTS 
 

The diets had high unsaturation indices of around 345 as a result of the the high PUFA 

content (~ 80 g.kg-1 of diet) (Table 2), primarily due to very high levels of n-3HUFA (Table 

3).  Peroxide values were significantly higher (up to 9-fold) in the diets containing the 

oxidised oil although the TBARS contents were all similar at around 6 µmol.mg-1 dry mass of 

diet.  The vitamin E contents of the supplemented diets, at between 200 and 260 mg.kg-1 diet, 

were around 7- fold higher than in the diets without supplemental vitamin E and, as a result, 

the PUFA/vitamin E molar ratios were 5- to 8-fold lower in the supplemented diets (Table 2).  

     Both the sea bream and turbot showed excellent growth, with specific growth rates 

(SGRs) varying between 2.9 and 3.7, whereas growth was poorer in halibut and an SGR of 3 

was only observed with fish fed diet HE (Table 4). Dietary oxidised oil significantly reduced 

growth in turbot, and especially in halibut, but not in sea bream where dietary oxidised oil 

had a slight stimulatory effect on growth. Vitamin E supplementation improved growth in sea 

bream fed oxidised oil but not in turbot or halibut. However, vitamin E supplementation 

improved survival in all three species.  Dietary oxidised oil reduced survival in both turbot 

and, especially halibut, with the greatest mortalities recorded in turbot and halibut fed the diet 

containing oxidised oil without vitamin E supplementation, diet HXO (Table 4). 

        Dietary oxidised oil increased the proportions of triacylglycerol and neutral lipids in 

livers of sea bream (Table 5) but had no significant effects on lipid class compositions in 

turbot or halibut (Tables 6 and 7).  Similarly, the experimental diets had few significant 

effects on liver fatty acid compositions other than dietary oxidised oil decreased the 

percentages of 14:0 and 18:3n-3 in sea bream (Table 5) and supplementary vitamin E  

reduced the proportions of total saturated fatty acids in halibut (Table 7).  

       In sea bream, the activities of the primary radical scavenging enzymes, catalase and 

SOD, were increased by feeding the diets containing peroxidised oil and reduced by 

supplementary dietary vitamin E.  In turbot, GST and GR activities were increased by feeding 
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oxidised oil and catalase, SOD and GST activities were reduced by dietary vitamin E (Table 

8). Dietary oxidised oil tended to increase both catalase and SOD activities in turbot although 

the data were just short of statistical significance.  By contrast, in halibut only GST was 

increased by feeding diets containing oxidised oil and only SOD was reduced by feeding 

vitamin E.  Interestingly, GR was generally increased by dietary vitamin E in all three species 

(Table 8).   Feeding diets containing oxidised oil increased lipid peroxidation products in 

halibut, but generally less so in sea bream and turbot (Table 9).  The increased lipid 

peroxidation products in response to feeding dietary oxidised oil were generally more 

pronounced in whole fish than in liver.  The lipid peroxidation products were generally 

reduced by dietary vitamin E in both sea bream and turbot, but generally not in halibut (Table 

9).  

 

DISCUSSION 
 

Our previous study demonstrated relationships between dietary vitamin E levels, liver 

vitamin E levels, the activities of the liver antioxidant enzymes and the levels of liver lipid 

peroxidation products (Tocher et al., 2001).   The overall balance of the data showed that 

these relationships were logical in that decreased dietary vitamin E levels and increased 

dietary PUFA/vitamin E ratios led to decreased levels of vitamin E and increased 

PUFA/vitamin E ratios in liver, and generally higher activities of the liver antioxidant 

enzymes and higher levels of lipid peroxides.   The present study was specifically designed to 

further investigate the antioxidant effects of vitamin E under more severe peroxidising 

conditions, including increased dietary HUFA (more than doubling the previous level in 

Tocher et al., 2001) and the feeding of oxidised oils.  The aim was to induce a more stressful 

pro-oxidant status to enable further characterisation of the biochemical indicators of 

peroxidative stress without causing unnecessary suffering to the experimental animals or high 

mortalities during the trials.  The results showed that the dietary formulations were 

significantly more severe than in our previous trials and, as hoped, this resulted in clearer 

antioxidant defence responses in the fish.  However, in addition, the present study showed 

clear species differences such that a gradient of deleterious effects was observed from very 

few in sea bream to considerable stress in halibut with turbot intermediate.  The extent of 

peroxidative stress and deleterious effects appeared inversely proportional to the responses of 

the hepatic antioxidant defence enzyme activities. 

       In sea bream, none of the diets had any deleterious effects on the overall health and well-
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being of the fish, which showed excellent growth with very low levels of mortality. In 

complete contrast, halibut did not appear able to respond to the diets in a same way as the sea 

bream.  Although lower survival rates would be expected for halibut, the mortalities in this 

trial were, at best,  double and, at worst, approximately four-fold greater than could have 

been expected (Tocher et al., 2001).   That, coupled with the very much lower growth rate 

compared to sea bream and turbot, showed that the diets were clearly inducing high levels of 

stress.  As could have been predicted, halibut fed the HXO diet were the most affected 

whereas fish fed the HE diet were the least affected.  The response in turbot was somewhere 

between the two extremes described above for sea bream and halibut.  Growth and survival 

were still fairly good.  However, growth was slightly reduced by feeding oxidised oil and 

survival was substantially lower in fish fed diet HXO. In several previous studies, dietary 

vitamin E  had no significant effects on growth in turbot (Stephan et al., 1995), Atlantic 

salmon (Lygren et al., 2000), African (Clarius gariepinus) and channel catfish (Ictalurus 

punctatus) (Baker and Davies, 1996; Bai and Gatlin, 1993).  However, dietary vitamin E 

deficiency reduced growth in amago salmon (Oncorhynchus rhodurus) (Taveekijakarn et al., 

1996) and juvenile Korean rockfish (Sebastes schlegeli) (Bai and Lee, 1998). 

      Both dietary oxidised oil and supplemental dietary vitamin E gave significant effects on 

liver antioxidant defence enzyme activities and lipid peroxidation products in sea bream and 

turbot.  In sea bream, the activities of the primary radical scavenging enzymes, catalase and 

SOD were increased by feeding dietary oxidised oil and reduced by dietary vitamin E. 

Similarly in turbot, the activities of catalase, SOD, GST and GR were increased by dietary 

oxidised oil, whereas vitamin E supplementation significantly reduced the activities of 

catalase, SOD and GST.  These effects are entirely consistent with the commonly perceived 

biochemical mechanisms of these enzyme systems (Winston and Di Giulio, 1991; Miller et 

al., 1993; Halliwell and Gutteridge, 1996). In contrast, in halibut, there was only a very 

moderate response by the liver antioxidant defence enzymes to the added peroxidation stress 

of oxidised oil and the protective effect of vitamin E was much less apparent.  Studies in 

which these enzyme activities have been measured in fish have tended to focus on their role 

in pollutant detoxification (Peters et al., 1994) or developmental aspects (Aceto et al., 1994; 

Otto and Moon, 1996; Peters and Livingstone, 1996).  No interactions were observed 

between dietary vitamin E and antioxidant enzyme activities in Atlantic salmon (Lygren et al. 

2000) and no clear relationship between dietary or tissue PUFA/vitamin E ratios and liver 

antioxidant enzyme activities were observed in gilthead sea bream (Mourente et al., 2000).   

Recently, we specifically showed that variation in dietary and, consequently, tissue 
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PUFA/vitamin E ratios could significantly affect peroxidation status, as determined by the 

levels of lipid peroxidation products, in juvenile marine fish with few physiologically 

significant affects on liver antioxidant enzyme activities (Tocher et al., 2001).  The present 

study has perhaps indicated that a more direct peroxidative stress, such as that induced by 

feeding oxidised oil is required before clear effects on the liver antioxidant enzyme activities 

are observed. 

             Therefore, and perhaps as a result of the responses in enzymic activities detailed 

above, feeding oxidised oil did not generally increase lipid peroxidation products in liver of 

sea bream and turbot but they were generally reduced by dietary vitamin E.   In a similar way, 

the general lack of response of the liver antioxidant defence enzymes, and the fact that dietary 

vitamin E appeared to have no moderating effect, were probably important contributing 

factors responsible for the higher levels of lipid peroxidation products observed in halibut fed 

diets containing oxidised oil.  The fact that the increased levels of lipid peroxidation products 

in response to feeding dietary oxidised oil were generally more pronounced in whole fish 

rather than in liver was not unexpected as vitamin E  is concentrated in the liver (Stéphan et 

al., 1995; Lygren et al., 2000; Tocher et al., 2001).  Decreasing PUFA/vitamin E ratios as a 

result of increasing dietary vitamin E levels reduced the levels of lipid peroxidation products 

in juvenile marine fish (Tocher et al., 2001) and increased dietary vitamin E levels resulted in 

decreased levels of TBARS in juvenile African catfish (Baker and Davies, 1996; 1997).  

 

CONCLUSIONS 

 

            Overall therefore, the present study was successful in further characterising 

peroxidative stress responses in juvenile marine fish.  Both sea bream and turbot generally 

responded to both dietary oxidised oil and dietary vitamin E in a logical and predictable 

manner whereas halibut appeared to be less able to respond adequately to the increased 

peroxidative stress the diets imposed. Thus, halibut liver antioxidant defence enzymes did not 

respond to dietary oxidised oil or vitamin E as occurred in turbot and, especially sea bream.  

This resulted in increased levels of lipid peroxides in halibut compared to turbot and sea 

bream given dietary oxidised oil. In addition, supplemental vitamin E did not reduce lipid 

peroxides in halibut as it did in turbot and sea bream. The increased peroxidation stress in 

halibut would account for their poorer growth and survival in comparison with turbot and, 

especially, sea bream.  The halibut were reared at a lower temperature than either turbot or 

sea bream but they were also slightly younger/smaller fish and possibly, therefore, more 
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developmentally immature, and either or all of these factors may be important in the general 

lack of response of the liver enzymes in halibut.  These data suggested that the capability of 

the antioxidant system may be species dependent, and perhaps related to developmental 

stage. In addition, halibut may have a higher requirement for vitamin E compared to the other 

two species perhaps related to culture temperature and/or HUFA requirement.  These 

apparent differences between species warrant further investigation. 
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