Skip to main content

Advertisement

Log in

MDA-MB-435 human breast carcinoma metastasis to bone

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Breast cancer metastasizes to bone with high frequency and incidence. However, studies of breast cancer metastasis to bone have been limited by two factors. First, the number of models that colonize bone are limited. Second, detection of bone metastases is too insensitive or too laborious for routine, large-scale studies or for studying the earliest steps in bone colonization. To partially alleviate these problems, the highly metastatic MDA-MB-435 (435) human breast carcinoma cell line was engineered to constitutively express enhanced green fluorescent protein (GFP). While 435GFP cells did not form femoral metastases following orthotopic or intravenous injections, they produced widespread osteolytic skeletal metastases following injection into the left ventricle of the heart. All mice developed at least one femur metastasis as well as a mandibular metastasis. As in humans, osseous metastases localized predominantly to trabecular regions, especially proximal and distal femur, proximal tibia, proximal humerus and lumbar vertebrae. 435GFP cells also developed metastases in adrenal glands, brain and ovary following intracardiac injection, suggesting that this model may also be useful for studying organotropism to other tissues as well. Additionally, GFP-tagging permitted detection of single cells and microscopic metastases in bone at early time points following arrival and at stages of proliferation prior to coalescence of individual metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ries LAG, Eisner MP, Kosary CL et al. (eds). SEER Cancer Statistics Review, 1973–1999. Bethesda, Maryland: National Cancer Institute 2002.

    Google Scholar 

  2. Body JJ. Metastatic bone disease: Clinical and therapeutic aspects. Bone 1992; 13: S57–S62.

    Article  PubMed  Google Scholar 

  3. Duivenvoorden WC, Popovic SV, Lhotak S et al. Doxycycline decreases tumor burden in a bone metastasis model of human breast cancer. Cancer Res 2002; 62: 1588–91.

    PubMed  CAS  Google Scholar 

  4. Guise TA. Molecular mechanisms of osteolytic bone metastases. Cancer 2000; 88 (12 Suppl): 2892–8.

    Article  PubMed  CAS  Google Scholar 

  5. Sasaki A, Boyce BF, Story B et al. Bisphosphonate risedronate reduces metastatic human breast cancer burden in bone in nude mice. Cancer Res 1995; 55: 3551–7.

    PubMed  CAS  Google Scholar 

  6. Yoneda T, Williams PJ, Hiraga T et al. A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J Bone Miner Res 2001; 16: 1486–95.

    Article  PubMed  CAS  Google Scholar 

  7. Yoneda T, Sasaki A, Dunstan C et al. Inhibition of osteolytic bone metastasis of breast cancer by combined treatment with the bisphosphonate ibandronate and tissue inhibitor of the matrix metalloproteinase-2. J Clin Invest 1997; 99: 2509–17.

    Article  PubMed  CAS  Google Scholar 

  8. Aslakson CJ, Miller FR. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 1992; 52: 1399–405.

    PubMed  CAS  Google Scholar 

  9. Yoneda T, Michigami T, Yi B et al. Actions of bisphosphonate on bone metastasis in animal models of breast carcinoma. Cancer 2000; 88: 2979–88.

    Article  PubMed  CAS  Google Scholar 

  10. Price JE, Zhang RD. Studies of human breast cancer metastasis using nude mice. Cancer Metastasis Rev 1990; 8: 285–97.

    Article  PubMed  CAS  Google Scholar 

  11. Welch DR. Technical considerations for studying cancer metastasis in vivo. Clin Exp Metastasis 1997; 15: 272–306.

    Article  PubMed  CAS  Google Scholar 

  12. Miller C, Kiriakova G, Su Kim L et al. Characterization of a novel breast cancer cell line established from a bone metastasis. Proc Am Assoc Cancer Res 2002; 43: 316.

    Google Scholar 

  13. Thompson EW, Sung V, Lavigne M et al. LCC15-MB: A vimentinpositive human breast cancer cell line from a femoral bone metastasis. Clin Exp Metastasis 1999; 17: 193–204.

    Article  PubMed  CAS  Google Scholar 

  14. Sasaki A, Kitamura K, Alcalde RE et al. Effect of a newly developed bisphosphonate, YH529, on osteolytic bone metastases in nude mice. Int J Cancer 1998; 77: 279–85.

    Article  PubMed  CAS  Google Scholar 

  15. Weber MH, Lee J, Orr FW. The effect of Neovastat (AE-941) on an experimental metastatic bone tumor model. Int J Oncol 2002; 20: 299–303.

    PubMed  CAS  Google Scholar 

  16. Wang CY, Chang YW. A model for osseous metastasis of human breast cancer established by intrafemur injection of the MDA-MB-435 cells in nude mice. Anticancer Res 1997; 17: 2471–4.

    PubMed  CAS  Google Scholar 

  17. Thomas RJ, Guise TA, Yin JJ et al. Breast cancer cells interact with osteoblasts to support osteoclast formation. Endocrinology 1999; 140: 4451–8.

    Article  PubMed  CAS  Google Scholar 

  18. Peyruchaud O, Winding B, Pecheur I et al. Early detection of bone metastases in a murine model using fluorescent human breast cancer cells: Application to the use of the bisphosphonate zoledronic acid in the treatment of osteolytic lesions. J Bone Miner Res 2001; 16:2027–34.

    Article  PubMed  CAS  Google Scholar 

  19. Averbuch SD. New bisphosphonates in the treatment of bone metastases. Cancer 1993; 72: 3443–52.

    Article  PubMed  CAS  Google Scholar 

  20. Arguello F, Baggs RB, Frantz CN. A murine model of experimental metastasis to bone and bone marrow. Cancer Res 1988; 48: 6876–81.

    PubMed  CAS  Google Scholar 

  21. Holleran JL, Miller CJ, Edgehouse NL et al. Differential experimental micrometastasis to lung, liver, and bone with lacZ-tagged CWR22R prostate carcinoma cells. Clin Exp Metastasis 2002; 19: 17–24.

    Article  PubMed  Google Scholar 

  22. Lin WC, Pretlow TP, Pretlow TG et al. Bacterial lacZ gene as a highly sensitive marker to detect micrometastasis formation during tumor progression. Cancer Res 1990; 50: 2808–17.

    PubMed  CAS  Google Scholar 

  23. Culp LA, Lin WC, Kleinman NR. Tagged tumor cells reveal regulatory steps during earliest stages of tumor progression and micrometastasis. Histol Histopathol 1999; 14: 879–86.

    PubMed  CAS  Google Scholar 

  24. Wetterwald A, van der PG, Que I et al. Optical imaging of cancer metastasis to bone marrow: A mouse model of minimal residual disease. Am J Pathol 2002; 160: 1143–53.

    PubMed  Google Scholar 

  25. Goldberg SF, Harms JF, Quon K et al. Metastasis-suppressed C8161 melanoma cells arrest in lung but fail to proliferate. Clin Exp Metastasis 1999; 17: 601–7.

    Article  PubMed  CAS  Google Scholar 

  26. Hoffman RM. Orthotopic transplant mouse models with green fluorescent protein-expressing cancer cells to visualize metastasis and angiogenesis. Cancer Metastasis Rev 1998; 17: 271–7.

    Article  PubMed  Google Scholar 

  27. Naumov GN, Wilson SM, MacDonald IC et al. Cellular expression of green fluorescent protein, coupled with high-resolution in vivo videomicroscopy, to monitor steps in tumor metastasis. J Cell Sci 1999; 112: 1835–42.

    PubMed  CAS  Google Scholar 

  28. Yang M, Jiang P, An Z et al. Genetically fluorescent melanoma bone and organ metastasis models. Clin Cancer Res 1999; 5: 3549–59.

    PubMed  CAS  Google Scholar 

  29. Yang M, Jiang P, Sun FX et al. A fluorescent orthotopic bone metastasis model of human prostate cancer. Cancer Res 1999; 59: 781–6.

    PubMed  CAS  Google Scholar 

  30. Cook MJ. The Anatomy of the Laboratory Mouse. New York: Academic Press 1965.

    Google Scholar 

  31. Price JE, Polyzos A, Zhang RD et al. Tumorigenicity and metastasis of human breast carcinoma cell lines in nude mice. Cancer Res 1990; 50: 717–21.

    PubMed  CAS  Google Scholar 

  32. Hoffman RM. Visualization of GFP-expressing tumors and metastasis in vivo. Biotechniques 2001; 30: 1016–26.

    PubMed  CAS  Google Scholar 

  33. Al Mehdi AB, Tozawa K, Fisher AB et al. Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: A new model for metastasis. Nat Med 2000; 6: 100–2.

    Article  PubMed  CAS  Google Scholar 

  34. Naumov GN, MacDonald IC, Weinmeister PM et al. Persistence of solitary mammary carcinoma cells in a secondary site: A possible contributor to dormancy. Cancer Res 2002; 62: 2162–8.

    PubMed  CAS  Google Scholar 

  35. Lote K, Walloe A, Bjersand A. Bone metastasis. Prognosis, diagnosis and treatment. Acta Radiol Oncol 1986; 25: 227–32.

    PubMed  CAS  Google Scholar 

  36. Miller F, Whitehill R. Carcinoma of the breast metastatic to the skeleton. Clin Orthop 1984; 184: 121–7.

    PubMed  Google Scholar 

  37. Nielsen OS, Munro AJ, Tannock IF. Bone metastases: Pathophysiology and management policy. J Clin Oncol 1991; 9: 509–24.

    PubMed  CAS  Google Scholar 

  38. Mbalaviele G, Dunstan CR, Sasaki A et al. E-cadherin expression in human breast cancer cells suppresses the development of osteolytic bone metastases in an experimental metastasis model. Cancer Res 1996; 56: 4063–70.

    PubMed  CAS  Google Scholar 

  39. Sasaki A, Alcalde RE, Nishiyama A et al. Angiogenesis inhibitor TNP-470 inhibits human breast cancer osteolytic bone metastasis in nude mice through the reduction of bone resorption. Cancer Res 1998; 58: 462–7.

    PubMed  CAS  Google Scholar 

  40. Zhang RD, Fidler IJ, Price JE. Relative malignant potential of human breast carcinoma cell lines established from pleural effusions and a brain metastasis. Invasion Metastasis 1991; 11: 204–15.

    PubMed  CAS  Google Scholar 

  41. Sasaki A, Yoneda T, Terakado N et al. Experimental bone metastasis model of the oral and maxillofacial region. Anticancer Res 1998; 18:1579–84.

    PubMed  CAS  Google Scholar 

  42. Sasaki A, Nishiyama A, Alcalde RE et al. Effects of bisphosphonate on experimental jaw metastasis model in nude mice. Oral Oncol 1999; 35: 523–9.

    Article  PubMed  CAS  Google Scholar 

  43. Yang M, Hasegawa S, Jiang P et al. Widespread skeletal metastatic potential of human lung cancer revealed by green fluorescent protein expression. Cancer Res 1998; 58: 4217–21.

    PubMed  CAS  Google Scholar 

  44. Harms JF, Budgeon LR, Christensen ND et al. Maintaining GFP tissue fluorescence through bone decalcification and long-term storage. Biotechniques 2002; 33: 1197–200.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny R. Welch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harms, J.F., Welch, D.R. MDA-MB-435 human breast carcinoma metastasis to bone. Clin Exp Metastasis 20, 327–334 (2003). https://doi.org/10.1023/A:1024062911144

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024062911144

Navigation