Skip to main content
Log in

Proteomics in Studies of Signal Transduction in Epithelial Cells

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

An understanding of the complexity of cancer is important for correct diagnostics and efficient treatment of this disease. Recent developments of proteomics technologies allow us to address the complexity of tumorigenesis at a level of global protein profiling. This review discusses recent studies of signaling processes in cells of epithelial origin undertaken with the use of global protein profiling. Tumors of epithelial origin comprise about 90% of human breast cancers, and it is believed that transformation of breast epithelial cells shares common features of transformation with other mammalian cells: destabilization of the genome followed by acquisition of immortalization, unrestricted growth, evasion of death-inducing signals, and acquisition of invasive and tumor promoting characteristics. Functional proteomics of growth-promoting, growth-inhibiting, and pro-apoptotic signaling pathways, in combination with proteomics studies of breast epithelial cell differentiation and profiling of breast tumorigenesis, revealed groups of regulated proteins: structural components, stress-regulated proteins, regulators of transcription, translation and RNA processing, and regulators of posttranslational modifications, e.g., kinases, phosphatases, and proteases. The first lesson of proteomics studies is the discovery of significant number of new targets, as compared to total number of affected proteins. The second lesson is the poor correlation between expressions of proteins and their mRNAs. The third lesson is the low amplitude of protein changes compared to that observed for mRNA. These observations also recommend the analysis of signaling patterns rather than separate signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. S. Cotran, S. L. Robbins, and V. Kumar (1994). The breast. In Robbins' Pathologic Basis of Disease, 5th edn., Saunders, Philadelphia, pp. 1089–1111.

    Google Scholar 

  2. J. Taylor-Papadimitriou and E. B. Lane (1987). The Mammary gland: Development, Regulation and Function, Plenum, New York, pp. 181–215.

    Google Scholar 

  3. D. Hanahan and R. Weinberg (2000). The hallmarks of cancer. Cell 100:57–70.

    Google Scholar 

  4. A. R. Venkitaraman (2002). Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108:171–182.

    Google Scholar 

  5. I. Bíeche and R. Lidereau (1995). Genetic alterations in breast cancer. Genes Chromosom. Cancer 14:227–251.

    Google Scholar 

  6. J. E. Celis, M. Kruhoffer, I. Gromova, C. Frederiksen, M. Ostergaard, T. Thykjaer, P. Gromov, J. Yu, H. Palsdottir, N. Magnusson, and T. F. Orntoft (2000). Gene expression pro-filing: Monitoring transcription and translation products using DNA microarrays and proteomics. FEBS Lett. 480:2–16.

    Google Scholar 

  7. S. M. Hanash, M. P. Bobek, D. S. Rickman, T. Williams, J. M. Rouillard, R. Kuick, and E. Puravs. (2002). Integrating cancer genomics and proteomics in the post-genome era. Proteomics 2:69–75.

    Google Scholar 

  8. R. F. Servant (2001). High-speed biologists search for gold in proteins. Science 294:2074–2083.

    Google Scholar 

  9. R. Westermeier and T. Naven (2002). Proteomics in Practice, Wiley-VCH, Weinheim.

    Google Scholar 

  10. T. Rabilloud (ed.) (2000). Proteome Research: Two-Dimensional Gel Electrophoresis and Identification Methods, Springer, Heidelberg, Germany.

    Google Scholar 

  11. C. Dickson, B. Spencer-Dene, C. Dillon, and V. Fantl (2000). Tyrosine kinase signalling in breast cancer: Fibroblast growth factors and their receptors. Breast Cancer Res. 2:191–196.

    Google Scholar 

  12. E. Fenig, R. Wieder, S. Paglin, H. Wang, R. Persaud, A. Haimovitz-Friedman, Z. Fuks, and J. Yahalom (1997). Basic fibroblast growth factor confers growth inhibition and mitogenactivated protein kinase activation in human breast cancer cells. Clin. Cancer Res. 3:135–142.

    Google Scholar 

  13. A.-S. Vercoutter-Edouart, X. Czeszak, M. Crepin, J. Lemoin, B. Boilly, X. L. Bourhis, J. P. Peyrat, and H. Hondermarck (2001). Proteomic detection of changes in protein synthesis induced by Fibroblast Growth Factor-2 in MCF-7 human breast cancer cells. Exp. Cell Res. 262:59–68.

    Google Scholar 

  14. Z. Kelman (1997). PCNA: Structure, functions and interactions. Oncogene 14:629–641.

    Google Scholar 

  15. P. Thaw,N. J. Baxter, A. M. Hounslow, C. Price, J. P. Waltho, and C. J. Craven (2001). Structure ofTCTPreveals unexpected relationship with guanine nucleotide-free chaperones. Nat. Struct. Biol. 8:701–704.

    Google Scholar 

  16. L. Neckers (2002). HSP90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol. Med. 8:S55–S61.

    Google Scholar 

  17. M. Seddighzadeh, S. Linder, M. C. Shoshan, G. Auer, and A. A. Alaiya (2000). Inhibition of extracellular signal-regulated kinase 1/2 activity of the breast cancer cell line MDA-MB-231 leads to major alterations in the pattern of protein expression. Electrophoresis 21:2737–2743.

    Google Scholar 

  18. R. K. Rasmussen, H. Ji, J. S. Eddes, R. L. Moritz, G. E. Reid, R. J. Simpson, and D. S. Dorow (1998). Two-dimensional electrophoretic analysis of mixed lineage kinase 2 N-terminal domain binding proteins. Electrophoresis 19:809-817.

    Google Scholar 

  19. T. S. Lewis, J. B. Hunt, L. D. Aveline, K. R. Jonscher, D. F. Louie, J. M. Yeh, T. S. Nahreini, K. A. Resing, and N. G. Ahn (2000). Identification of novel MAP kinase pathway signaling targets by functional proteomics and mass spectrometry. Mol. Cell 6:1343–1354.

    Google Scholar 

  20. V. Soskic, M. Görlach, S. Poznanovic, F. D. Boehmer, and J. Godovac-Zimmermann (1999). Functional proteomics analysis of signal transduction pathways of the platelet-derived growth factor β receptor. Biochemistry 38:1757–1764.

    Google Scholar 

  21. C. H. Heldin, A. Ostman, and L. Ronnstrand (1998). Signal transduction via platelet-derived growth factor receptors. Biochim. Biophys. Acta 1378:F79–F113.

    Google Scholar 

  22. T.-Y. Ho, J. Russo, and I. H. Russo (1994). Polypeptide pattern of human breast epithelial cells following human chorionic gonadotropin treatment. Electrophoresis 15:746–750.

    Google Scholar 

  23. T. Kanamoto, U. Hellman, C.-H. Heldin, and S. Souchelnytskyi (2002). Functional proteomics of transforming growth factor-β1-stimulated Mv1Lu epithelial cells: Rad51 as a target of TGFβ1-dependent regulation of DNA repair. EMBO J. 21:1219–1230.

    Google Scholar 

  24. S. Prasad, V. A. Soldatenkov, G. Srinivasarao, and A. Dritschilo (1998). Identification of keratins 18, 19 and heat-shock protein 90 beta as candidate substrates of proteolysis during ionizing radiation-induced apoptosis of estrogen-receptor negative breast tumor cells. Int. J. Oncol. 13:757–764.

    Google Scholar 

  25. V. Badock, U. Steinhusen, K. Bommert, B. Wittmann-Liebold, and A. Otto (2001). Apoptosis-induced cleavage of keratin 15 and keratin 17 in a human breast epithelial cell line. Cell Death Differ. 8:308–315.

    Google Scholar 

  26. R. A. Toillon, S. Descamps, E. Adrienssens, J. M Ricort, D. Bernard, B. Boilly, and X. Le Bourhis (2002). Normal breast epithelial cells induce apoptosis of breast cancer cells via Fas signaling. Exp. Cell Res. 275:31–43.

    Google Scholar 

  27. C. Gerner, U. Fröhwein, J. Gotzmann, E. Bayer, D. Gelbmann, W. Bursch, and R. Schulte-Hermann (2000). The Fas-induced apoptosis analyzed by high throughput proteome analysis. J. Biol. Chem. 275:39018–39026.

    Google Scholar 

  28. B. Thiede, C. Dimmler, F. Siejak, and T. Rudel (2001). Predominant identification of RNA-binding proteins in Fas-induced apoptosis by proteome analysis. J. Biol. Chem. 276:26044–26050.

    Google Scholar 

  29. S.-T. Chen, T.-L. Pan, Y.-C. Tsai, and C.-M. Huang (2002). Proteomics reveals protein profile changes in doxorubicin-treated MCF-7 human breast cancer cells. Cancer Lett. 181:95–107.

    Google Scholar 

  30. S. Oesterreich, C. N. Weng, M. Qiu, S. G. Hilsenbeck, C. K. Osborne, and S. A. Fuqua (1993). The small heat shock protein hsp27 is correlated with growth and drug resistance in human breast cancer cell lines. Cancer Res. 53:4443–4448.

    Google Scholar 

  31. B. A. Gusterson, M. J. Warburton, D. Mitchell,M.Ellison, A. M. Neville, and P. S. Rudland (1982). Distribution of myoepithelial cells and basement membrane proteins in the normal breast and in benign and malignant breast diseases. Cancer Res. 42:4763–4770.

    Google Scholar 

  32. C. Péchoux, T. Gudjonsson, L. Ronnov-Jenssen, M. J. Bissell, and O. W. Petersen (1999). Human mammary luminal epithelial cells contain progenitors to myoepithelial cells. Dev. Biol. 206:88–99.

    Google Scholar 

  33. M. J. Page, B. Amess, R. R. Townsed, R. Parekh, A. Herath, L. Brusten, M. J. Zvelebil, R. C. Stein, M. D. Waterfield, S. C. Davies, and M. J. O'Hare (1999). Proteomic definition of normal human luminal and myoepithelial breast cells purified from reduction mammoplasties. Proc. Natl. Acad. Sci. U.S.A. 96:12589–12594.

    Google Scholar 

  34. D. K. Trask, V. Band, D. A. Zajchkovski, P. Yaswen, T. Suh, and R. Sager (1990). Keratins as markers that distinguish normal and tumor-derived mammary epithelial cells. Proc. Natl. Acad. Sci. U.S.A. 87:2319–2323.

    Google Scholar 

  35. B. Franzen, S. Linder, A. A. Alaiya, E. Eriksson, K. Fujioka, A.-C. Bergman, H. Jörnvall, and G. Auer. (1997). Analysis of polypeptide expression in benign and malignant human breast lesions. Electrophoresis 18:582–587.

    Google Scholar 

  36. A.-C. Bergman, T. Benjamin, A. Alaiya, M. Waltham, K. Sakaguchi, B. Franzen, S. Linder, T. Bergman, G. Auer, E. Appella, P. J. Wirth, and H. Jörnvall (2000). Identification of gel-separated tumor marker proteins by mass spectrometry. Electrophoresis 21:679–686.

    Google Scholar 

  37. L. Bini, B. Magi, B. Marzocchi, F. Arcuri, S. Tripodi, M. Cintorino, J.-C. Sanchez, S. Frutiger, G. Hughes, V. Pallini, D. Hochstrasser, and P. Tosi (1997). Protein expression profiles in human breast ductal carcinoma and histologically normal tissue. Electrophoresis 18:2832–2841.

    Google Scholar 

  38. J. D. Wulfkuhle, D. C. Sgroi, H. Krutzsch, K. McLean, K. McGarvey, M. Knowlton, S. Chen, H. Shu, A. Sahin, R. Kurek, D. Wallwiener, M. J. Merino, E. F. Petricoin III, Y. Zhao, and P. S. Steeg (2002). Proteomics of human breast ductal carcinoma in situ. Cancer Res. 62:6740–6749.

    Google Scholar 

  39. C. V. Dang and G. L. Semenza (1999) Oncogenic alterations of metabolism. Trends Biol. Sci. 24:68–72.

    Google Scholar 

  40. I. Pucci-Minafra, S. Fontana, P. Cancemi, G. Alaimo, and S. Minafra (2002). Proteomic patterns of cultured breast cancer cells and epithelial mammary cells. Ann. N.Y. Acad. Sci. 963:122–139.

    Google Scholar 

  41. K. Williams, C. Chubb, E. Huberman, and C. S. Giometti. (1998). Analysis of differential protein expression in normal and neoplastic human breast epithelial cell lines. Electrophoresis 19:333–343.

    Google Scholar 

  42. A.-S. Vercoutter-Edouart, J. Lemoine, X. L. Bourhis, H. Louis, B. Boilly, V. Nurcombe, F. Revillion, J.-P. Peyrat, and H. Hondermarck (2001). Proteomic analysis reveals that 14-3-3 ? is down-regulated in human breast cancer cells. Cancer Res. 61:76–80.

    Google Scholar 

  43. S. Harvey, Y. Zhang, F. Landry, C. Miller, and J. W. Smith. (2001). Insights into plasma membrane signature. Physiol. Genomics 5:129–136.

    Google Scholar 

  44. B. Franzen, G. Auer, A. A. Alaiya, E. Eriksson, K. Uryu, T. Hirano, K. Okuzawa, H. Kato, and S. Linder (1996). Assessment of homogeneity in polypeptide expression in breast carcinomas shows widely variable expression in highly malignant tumors. Int. J. Cancer 69:408–414.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souchelnytskyi, S. Proteomics in Studies of Signal Transduction in Epithelial Cells. J Mammary Gland Biol Neoplasia 7, 359–371 (2002). https://doi.org/10.1023/A:1024029930563

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024029930563

Navigation